Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Environ Res ; 109: 103-12, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26121661

ABSTRACT

Three types of thin-layer caps with activated carbon (AC) were tested in situ in experimental plots (10 × 10 m) in Trondheim harbor, Norway, using AC + clay, AC-only or AC + sand. One year after capping, intact sediment cores were collected from the amended plots for ex situ surveys of the capping efficiency in reducing the PAH and PCB aqueous concentrations and bioaccumulation by the polychaete Hediste diversicolor and the clam Abra nitida. Reduced pore water concentrations were observed in all AC treatments. The capping efficiency was in general AC + clay > AC-only > AC + sand. AC + clay reduced bioaccumulation of PAH and PCB congeners between 40% and 87% in the worms and between 67% and 97% in the clams. Sediment capped with AC-only also led to reduced bioaccumulation of PCBs, while AC + sand showed no reduction in bioaccumulation. Thus the best thin-layer capping method in this study was AC mixed with clay.


Subject(s)
Bivalvia/metabolism , Charcoal/chemistry , Environmental Restoration and Remediation , Polychaeta/metabolism , Polychlorinated Biphenyls/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Geologic Sediments/chemistry , Norway , Seasons
2.
Environ Toxicol Chem ; 34(4): 710-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25702935

ABSTRACT

Meth ods involving polyoxymethylene (POM) as a passive sampler are increasing in popularity to assess contaminant freely dissolved porewater concentrations in soils and sediments. These methods require contaminant-specific POM-water partition coefficients, KPOM . Certain methods for determining KPOM perform reproducibly (within 0.2 log units). However, other methods can give highly varying KPOM values (up to 2 log units), especially for polycyclic aromatic hydrocarbons (PAHs). To account for this variation, the authors tested the influence of key methodological components in KPOM determinations, including POM thickness, extraction procedures, and environmental temperature and salinity, as well as uptake kinetics in mixed and static systems. All inconsistencies in the peer-reviewed literature can be accounted for by the likelihood that thick POM materials (500 µm or thicker) do not achieve equilibrium (causing negative biases up to 1 log unit), or that certain POM extraction procedures do not ensure quantitative extraction (causing negative biases up to 2 log units). Temperature can also influence KPOM , although all previous literature studies were carried out at room temperature. The present study found that KPOM values at room temperature are independent (within 0.2 log units) of POM manufacture method, of thickness between 17 µm and 80 µm, and of salinity between 0% and 10%. Regarding kinetics, monochloro- to hexachloro-polychlorinated biphenyls (PCBs) were within 0.2 log units of equilibrium after 28 d in the mixed system, but only dichloro-PCBs achieved near equilibrium after 126 d in the static system. Based on these insights, recommended methods and KPOM values to facilitate interlaboratory reproducibility are presented.


Subject(s)
Environmental Monitoring/methods , Resins, Synthetic/chemistry , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Algorithms , Animals , Geologic Sediments , Kinetics , Reproducibility of Results , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL