Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455540

ABSTRACT

Elucidation of the mechanism of action of compounds with cellular bioactivity is important for progressing compounds into future drug development. In recent years, phenotype-based drug discovery has become the dominant approach to drug discovery over target-based drug discovery, which relies on the knowledge of a specific drug target of a disease. Still, when targeting an infectious disease via a high throughput phenotypic assay it is highly advantageous to identifying the compound's cellular activity. A fraction derived from the plant Polyalthia sp. showed activity against Mycobacterium tuberculosis at 62.5 µge/µL. A known compound, altholactone, was identified from this fraction that showed activity towards M. tuberculosis at an minimum inhibitory concentration (MIC) of 64 µM. Retrospective analysis of a target-based screen against a TB proteome panel using native mass spectrometry established that the active fraction was bound to the mycobacterial protein Rv1466 with an estimated pseudo-Kd of 42.0 ± 6.1 µM. Our findings established Rv1466 as the potential molecular target of altholactone, which is responsible for the observed in vivo toxicity towards M. tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Biological Products/pharmacology , Polyalthia/chemistry , Tuberculosis/drug therapy , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Biological Products/chemistry , Drug Discovery , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/pathogenicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proteome/genetics , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...