Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807584

ABSTRACT

The occurrence and persistence of pharmaceuticals in the food chain, particularly edible crops, can adversely affect human and environmental health. In this study, the impacts of the absorption, translocation, accumulation, and degradation of paracetamol in different organs of the leafy vegetable crop spinach (Spinacia oleracea) were assessed under controlled laboratory conditions. Spinach plants were exposed to 50 mg/L, 100 mg/L, and 200 mg/L paracetamol in 20% Hoagland solution at the vegetative phase in a hydroponic system. Exposed plants exhibited pronounced phytotoxic effects during the eight days trial period, with highly significant reductions seen in the plants' morphological parameters. The increasing paracetamol stress levels adversely affected the plants' photosynthetic machinery, altering the chlorophyll fluorescence parameters (Fv/Fm and PSII), photosynthetic pigments (Chl a, Chl b and carotenoid contents), and composition of essential nutrients and elements. The LC-MS results indicated that the spinach organs receiving various paracetamol levels on day four exhibited significant uptake and translocation of the drug from roots to aerial parts, while degradation of the drug was observed after eight days. The VITEK® 2 system identified several bacterial strains (e.g., members of Burkhulderia, Sphingomonas, Pseudomonas, Staphylococcus, Stenotrophomonas and Kocuria) isolated from spinach shoots and roots. These microbes have the potential to biodegrade paracetamol and other organic micro-pollutants. Our findings provide novel insights to mitigate the risks associated with pharmaceutical pollution in the environment and explore the bioremediation potential of edible crops and their associated microbial consortium to remove these pollutants effectively.

2.
Physiol Plant ; 173(4): 1695-1714, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34741316

ABSTRACT

Salsola drummondii is a perennial habitat-indifferent halophyte growing in saline and nonsaline habitats of the Arabian hyperarid deserts. It offers an invaluable opportunity to examine the molecular mechanisms of salt tolerance. The present study was conducted to elucidate these mechanisms through transcriptome profiling of seedlings grown from seeds collected in a saline habitat. The Illumina Hiseq 2500 platform was employed to sequence cDNA libraries prepared from shoots and roots of nonsaline-treated plants (controls) and plants treated with 1200 mM NaCl. Transcriptomic comparison between salt-treated and control samples resulted in 17,363 differentially expressed genes (DEGs), including 12,000 upregulated genes (7870 in roots, 4130 in shoots) and 5363 downregulated genes (4258 in roots and 1105 in shoots). The majority of identified DEGs are known to be involved in transcription regulation (79), signal transduction (82), defense metabolism (101), transportation (410), cell wall metabolism (27), regulatory processes (392), respiration (85), chaperoning (9), and ubiquitination (98) during salt tolerance. This study identified potential genes associated with the salt tolerance of S. drummondii and demonstrated that this tolerance may depend on the induction of certain genes in shoot and root tissues. These gene expressions were validated using reverse-transcription quantitative PCR, the results of which were consistent with transcriptomics results. To the best of our knowledge, this is the first study providing genetic information on salt tolerance mechanisms in S. drummondii.


Subject(s)
Salsola , Salt-Tolerant Plants , Ecosystem , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Roots/genetics , Salt-Tolerant Plants/genetics , Transcriptome/genetics
3.
Front Plant Sci ; 9: 872, 2018.
Article in English | MEDLINE | ID: mdl-30061904

ABSTRACT

With the increased use of metal nanoparticles (NPs), their access to the food chain has become a main concern to scientists and holds controversial social implications. This research particularly sheds light on copper nanoparticles (CuNP), as they have been commonly used in several industries nowadays. In this study, we investigated the phytotoxicity of CuNP on cucumber (Cucumis sativus) plants grown hydroponically. Atomic Absorption Spectroscopy (AAS), X-Ray Fluorescence (XRF), and Scanning Electron Microscopy (SEM) analysis confirmed that C. sativus treated with CuNP accumulated CuNP in the plant tissues, with higher levels in roots, with amounts that were concentration dependent. Furthermore, genotoxicity was assessed using Random amplified polymorphic DNA (RAPD) technique, and our results showed that CuNP caused genomic alterations in C. sativus. Phenotypical, physiological, and biochemical changes were assessed by determining the CuNP treated plant's total biomass, chlorophyll, H2O2 and MDA contents, and electrolyte leakage percentage. The results revealed notable adverse phenotypical changes along with decreased biomass and decreased levels of the photosynthetic pigments (Chlorophyll a and b) in a concentration-dependent manner. Moreover, CuNP induced damage to the root plasma membrane as determined by the increased electrolyte leakage. A significant increase in H2O2 and MDA contents were detected in C. sativus CuNP treated plants. Additionally, copper-zinc superoxide dismutase (Cu-Zn SOD) gene expression was induced under CuNP treatment. Overall, our results demonstrated that CuNP of 10-30 nm size were toxic to C. sativus plants. This finding will encourage the safe production and disposal NPs. Thus, reducing nano-metallic bioaccumulation into our food chain through crop plants; that possesses a threat to the ecological system.

4.
PLoS One ; 13(2): e0192576, 2018.
Article in English | MEDLINE | ID: mdl-29415032

ABSTRACT

Unlike animals, plants are sessile organisms, lacking circulating antibodies and specialized immune cells and are exposed to various harsh environmental conditions that make them at risk of being attacked by different pathogens and herbivores. Plants produce chemo-signals to respond to the surroundings and be able to distinguish between harmless and harmful signals. In this study, the production of phytochemicals as plant signaling mechanisms and their defensive roles in disease resistance and repelling herbivores are examined in Calligonum comosum. C. comosum is a leafless standalone perennial shrub widespread in sand dunes. The plant has the ability to survive the drastic environmental conditions of the arid/ hyperarid deserts of the Arabia. Structural anatomy and phytochemicals analyses were used to identify both mechanical and chemical defensive mechanisms in C. comosum. Microscopy-based investigations indicated that stems of this species developed hard structures in its outer layers including sclerenchyma and cluster crystals of calcium oxalate (CaOx). Sclerenchyma and CaOx are difficult to be eaten by herbivores and insects and can harm their mouthparts. On the other hand, the plant developed both short-distance (local) and long-distance (systematic over limited sphere) phytochemicals-producing cells located at its outer regions that is surrounding the inner nutrient-rich vascular system (VS). Local chemical was represented by phenolic idioblasts that were released in response to plant cutting. Systematic chemical was represented by toxic volatile oil containing ~50% benzaldehyde derivative (cuminaldehyde). The oil caused strong killing effect on both mammalian cells and microbial pathogens via either direct addition or indirect exposure to its vapor. The plants lost the oil content and allowed fungal growth once cut and dried. The localization of both defensive mechanisms to the outer region of the plant seemed to protect the inner nutrient-rich VS and hence maintained the plant survival. Surprisingly, in relation to traditional folklore use as medicine, local people use only green parts of the plant and only during the winter, where the plant found devoid of volatile oil and phenolic idioblasts. Moreover, it turns into recommendations for local people to avoid any health problems caused by the plant supply.


Subject(s)
Desert Climate , Polygonaceae/physiology , Polygonaceae/anatomy & histology , Polygonaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...