Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1377980, 2024.
Article in English | MEDLINE | ID: mdl-38808257

ABSTRACT

Liver fibrosis is a disease with a great global health and economic burden. Existing data highlights itraconazole (ITRCZ) as a potentially effective anti-fibrotic therapy. However, ITRCZ effect is hindered by several limitations, such as poor solubility and bioavailability. This study aimed to formulate and optimize chitosan nanoparticles (Cht NPs) loaded with ITRCZ as a new strategy for managing liver fibrosis. ITRCZ-Cht NPs were optimized utilizing a developed 22 full factorial design. The optimized formula (F3) underwent comprehensive in vitro and in vivo characterization. In vitro assessments revealed that F3 exhibited an entrapment efficiency of 89.65% ± 0.57%, a 169.6 ± 1.77 nm particle size, and a zeta potential of +15.93 ± 0.21 mV. Furthermore, in vitro release studies indicated that the release of ITRCZ from F3 adhered closely to the first-order model, demonstrating a significant enhancement (p-value < 0.05) in cumulative release compared to plain ITRCZ suspension. This formula increased primary hepatocyte survival and decreased LDH activity in vitro. The in vivo evaluation of F3 in a rat model of liver fibrosis revealed improved liver function and structure. ITRCZ-Cht NPs displayed potent antifibrotic effects as revealed by the downregulation of TGF-ß, PDGF-BB, and TIMP-1 as well as decreased hydroxyproline content and α-SMA immunoexpression. Anti-inflammatory potential was evident by reduced TNF-α and p65 nuclear translocation. These effects were likely ascribed to the modulation of Hedgehog components SMO, GLI1, and GLI2. These findings theorize ITRCZ-Cht NPs as a promising formulation for treating liver fibrosis. However, further investigations are deemed necessary.

2.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Article in English | MEDLINE | ID: mdl-38559447

ABSTRACT

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Subject(s)
Althaea , Chitosan , Diabetes Mellitus , Metal Nanoparticles , Zinc Oxide , Humans , Animals , Rats , Zinc Oxide/chemistry , Chitosan/chemistry , Althaea/metabolism , Interleukin-6 , Tumor Necrosis Factor-alpha , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing , Anti-Inflammatory Agents/pharmacology , Inflammation , Flowers , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
Int J Nanomedicine ; 19: 1163-1187, 2024.
Article in English | MEDLINE | ID: mdl-38344440

ABSTRACT

Purpose: Improving the treatment of psoriasis is a serious challenge today. Psoriasis is an immune-mediated skin condition affecting 125 million people worldwide. It is commonly treated with cyclosporine-A (CsA) and dithranol (DTH). CsA suppresses the activation of T-cells, immune cells involved in forming psoriatic lesions. Meanwhile, DTH is a potent anti-inflammatory and anti-proliferative drug that effectively reduces the severity of psoriasis symptoms such as redness, scaling, and skin thickness. CsA and DTH belong to BCS class II with limited oral bioavailability. We aim to develop a drug delivery system for topical co-delivery of CsA and DTH, exploring its therapeutic potential. Methods: Firstly, we developed a niosomal drug delivery system based on ceramide IIIB to form Cerosomes. Cerosomes were prepared from a mixture of Ceramide, hyaluronic acid, and edge activator using a thin-film hydration technique. To co-deliver CsA and DTH topically for the treatment of psoriasis. These two hydrophobic drugs encapsulated into our synthesized positively charged particle cerosomes. Results:  Cerosomes had an average particle size of (222.36 nm± 0.36), polydispersity index of (0.415±0.04), Entrapment Efficiency of (96.91%± 0.56), and zeta potential of (29.36±0.38mV) for selected formula. In vitro, In silico, in vivo, permeation, and histopathology experiments have shown that cerosomes enhanced the skin penetration of both hydrophobic drugs by 66.7% compared to the CsA/DTH solution. Imiquimod (IMQ) induced psoriatic mice model was topically treated with our CsA/DTH cerosomes. We found that our formulation enhances the skin penetration of both drugs and reduces psoriasis area and severity index (PASI score) by 2.73 times and 42.85%, respectively, compared to the CsA/DTH solution. Moreover, it reduces the levels of proinflammatory cytokines, TNF-α, IL-10, and IL-6 compared to CsA/DTH solution administration. Conclusion: The Cerosomes nano-vesicle-containing CsA/DTH represents a more promising topical treatment for psoriasis, giving new hope to individuals with psoriasis, compared to commercial and other conventional alternatives.


Subject(s)
Anthralin , Psoriasis , Humans , Animals , Mice , Anthralin/pharmacology , Anthralin/therapeutic use , Cyclosporine/pharmacology , Phospholipids , Ceramides/pharmacology , Administration, Cutaneous , Psoriasis/drug therapy , Psoriasis/pathology , Skin , Disease Models, Animal
4.
Drug Deliv ; 30(1): 2241665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37537858

ABSTRACT

Canagliflozin (CFZ) is a sodium-glucose cotransporter-2 inhibitor (SGLT2) that lowers albuminuria in type-2 diabetic patients, cardiovascular, kidney, and liver disease. CFZ is classified as class IV in the Biopharmaceutical Classification System (BCS) and is characterized by low permeability, solubility, and bioavailability, most likely attributed to hepatic first-pass metabolism. Nanocrystal-based sublingual formulations were developed in the presence of sodium caprate, as a wetting agent, and as a permeability enhancer. This formulation is suitable for children and adults and could enhance solubility, permeability, and avoid enterohepatic circulation due to absorption through the sublingual mucosa. In the present study, formulations containing various surfactants (P237, P338, PVA, and PVP K30) were prepared by the Sono-homo-assisted precipitation ion technique. The optimized formula prepared with PVP-K30 showed the smallest particle size (157 ± 0.32 nm), Zeta-potential (-18 ± 0.01), and morphology by TEM analysis. The optimized formula was subsequently formulated into a sublingual tablet containing Pharma burst-V® with a shorter disintegration time (51s) for the in-vivo study. The selected sublingual tablet improved histological and biochemical markers (blood glucose, liver, and kidney function), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) pathway compared to the market formula, increased CFZ's antidiabetic potency in diabetic rabbits, boosted bioavailability by five-fold, and produced faster onset of action. These findings suggest successful treatment of diabetes with CFZ nanocrystal-sublingual tablets.


Subject(s)
Diabetes Mellitus, Type 2 , Nanoparticles , Sodium-Glucose Transporter 2 Inhibitors , Animals , Rabbits , Canagliflozin , Tablets/chemistry , Solubility , Povidone/chemistry , Permeability , Nanoparticles/chemistry
5.
Int J Pharm ; 634: 122665, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36736676

ABSTRACT

Minoxidil has been used as an effective and cost-efficient topical treatment for androgenic alopecia. However, due to its poor water solubility, commercially available formulations contain alcohol and propylene glycol in a concentration that causes skin reactions such as irritation and dryness. Therefore, nanotechnology-based formulations can offer an alternative that might increase penetration and deposition of the drug in the skin while minimizing its adverse reactions. Minoxidil cubosomes (MXD-CUB) were prepared by melt dispersion emulsification technique according to full 23 factorial design. Three independent variables, namely, the dispersed phase concentration, glyceryl monooleate: Poloxamer 407 ratio and Tween 80 concentration were tested. Particle size, polydispersity index and the zeta potential were the dependent variables. The optimized formula was investigated by transmission electron microscopy, X-ray diffractometry and in vitro release test. In vivo study included Draize test, histopathological examination, hair regrowth efficacy and confocal laser scanning microscopy (CLSM). Particle size, zeta potential and polydispersity index of the optimal MXD-CUB were measured to be 131.10 ± 1.41 nm, -23.5 ± 0.42 mV and 0.185 ± 0.0, respectively, and its entrapment efficiency was 80.4 ± 4.04 %. Draize test and histopathological testing proved safety and tolerability of MXD-CUB. In vivo hair regrowth study revealed greater hair growth boosting effect of the prepared cubosomes compared to minoxidil solution. CLSM proved superior penetration and retention of rhodamine B-loaded cubosomes in the skin compared to rhodamine B solution. Therefore, MXD-CUB can be a safe and effective dosage form for minoxidil that overcome the drawbacks of the commercial formulations.


Subject(s)
Hair , Minoxidil , Humans , Minoxidil/adverse effects , Alopecia/drug therapy , Skin , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...