Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37374577

ABSTRACT

Alkali-activated slag (AAS) has emerged as a potentially sustainable alternative to ordinary Portland cement (OPC) in various applications since OPC production contributed about 12% of global CO2 emissions in 2020. AAS offers great ecological advantages over OPC at some levels such as the utilization of industrial by-products and overcoming the issue of disposal, low energy consumption, and low greenhouse gas emission. Apart from these environmental benefits, the novel binder has shown enhanced resistance to high temperatures and chemical attacks. However, many studies have mentioned the risk of its considerably higher drying shrinkage and early-age cracking compared to OPC concrete. Despite the abundant research on the self-healing mechanism of OPC, limited work has been devoted to studying the self-healing behavior of AAS. Self-healing AAS is a revolutionary product that provides the solution for these drawbacks. This study is a critical review of the self-healing ability of AAS and its effect on the mechanical properties of AAS mortars. Several self-healing approaches, applications, and challenges of each mechanism are taken into account and compared regarding their impacts.

2.
Polymers (Basel) ; 13(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34961019

ABSTRACT

Fiber-reinforced concrete (FRC) is a competitive solution for the durability of reinforced structures. This paper aims to observe the moment redistribution behavior occurring due to flexural and shear loading in Glass Fiber-Reinforced Polymer- (GFRP) reinforced continuous concrete beams. A rectangular cross-section was adopted in this study with dimensions of 200 mm in width and 300 mm in depth with a constant shear span-to-depth ratio of 3. The reinforcement ratio for the top and bottom were equal at sagging and hogging moment regions. A finite element model was created using Analysis System (ANSYS) and validated with the existing experimental results in the literature review. Based on the literature review, the parametric study was conducted on twelve beam specimens to evaluate the influence of concrete compressive strength, transversal GFRP stirrups ratio, and longitudinal reinforcement ratio on the redistribution of the moment in beams. Several codes and guidelines adopted different analytical models. The Canadian Standards Association (CSA) S806 adopted the modified compression field theory in predicting the shear capacity of the simply supported beams. Recently, various researchers encountered several factors and modifications to account for concrete contribution, longitudinal, and transverse reinforcement. A comparison between the predicting shear capacity of the generated finite element model, the analytical model, and the existing data from the literature was performed. The generated finite element model showed a good agreement with the experimental results, while the beam specimens failed in shear after undergoing significant moment redistribution from hogging to sagging moment region. The moment distribution observed about 21.5% from FEM of beam specimen GN-1.2-0.48-d, while the experimental results achieved 24% at failure load. For high strength concrete presented in beam specimen GH-1.2-0.63-d, the result showed about 20.2% moment distribution, compared to that achieved experimentally of 23% at failure load.

SELECTION OF CITATIONS
SEARCH DETAIL
...