Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Immunol Cell Biol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726587

ABSTRACT

We studied the associations between inflammation-related proteins in circulation and complications after pediatric allogenic hematopoietic stem cell transplantation (HSCT), to reveal proteomic signatures or individual soluble proteins associated with specific complications after HSCT. We used a proteomics method called Proximity Extension Assay to repeatedly measure 180 different proteins together with clinical variables, cellular immune reconstitution and blood viral copy numbers in 27 children (1-18 years of age) during a 2-year follow-up after allogenic HSCT. Protein profile analysis was performed using unsupervised hierarchical clustering and a regression-based method, while the Bonferroni-corrected Mann-Whitney U-test was used for time point-specific comparison of individual proteins against outcome. At 6 months after allogenic HSCT, we could identify a protein profile pattern associated with occurrence of the complications such as chronic graft-versus-host disease, viral infections, relapse and death. When protein markers were analyzed separately, the plasma concentration of the inhibitory and cytotoxic T-cell surface protein FCRL6 (Fc receptor-like 6) was higher in patients with cytomegalovirus (CMV) viremia [log2-fold change 1.5 (P = 0.00099), 2.5 (P = 0.00035) and 2.2 (P = 0.045) at time points 6, 12 and 24 months]. Flow cytometry confirmed that FCRL6 expression was higher in innate-like γδ T cells, indicating that these cells are involved in controlling CMV reactivation in HSCT recipients. In conclusion, the potentially druggable FCRL6 receptor on cytotoxic T cells appears to have a role in controlling CMV viremia after HSCT. Furthermore, our results suggest that system-level analysis is a useful addition to the studying of single biomarkers in allogenic HSCT.

2.
Nat Commun ; 15(1): 3810, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714671

ABSTRACT

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Glutamate Decarboxylase , Immunity, Cellular , Humans , Diabetes Mellitus, Type 1/immunology , Autoantibodies/immunology , Autoantibodies/blood , Child , Female , Male , Glutamate Decarboxylase/immunology , Child, Preschool , Adolescent , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Insulin/immunology , Islets of Langerhans/immunology , Disease Progression
3.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805281

ABSTRACT

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Subject(s)
Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Cell Differentiation/genetics
4.
Clin Immunol ; : 110261, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788884

ABSTRACT

BACKGROUND: Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of potential enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide profound insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.

5.
Biol Reprod ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780059

ABSTRACT

Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) is a steroid synthetic enzyme expressed in ovarian granulosa cells and placental syncytiotrophoblasts. Here, HSD17B1 serum concentration was measured with a validated immuno assay during pregnancy at three time points (12-14, 18-20 and 26-28 weeks of gestation). The concentration increased 2.5-fold (p < 0.0001) and 1.7-fold (p = 0.0019) during the follow-up period for control women and women who later developed preeclampsia (PE), respectively, and a significant difference was observed at weeks 26-28 (p = 0.0266). HSD17B1 concentration at all the three time points positively correlated with serum PAPPA measured at the first time point (first time point r = 0.38, p = 1.1x10-10; second time point r = 0.27, p = 5.9x10-6 and third timepoint r = 0.26, p = 2.3x10-5). No correlation was observed between HSD17B1 and placental growth factor (PLGF). Serum HSD17B1, furthermore, negatively correlated with the mother's weight and body mass index (BMI), mirroring the pattern observed for PAPPA. The univariable logistic regression identified a weak association between HSD17B1 at 26-28 weeks and later development of PE (P = 0.04). Also, the best multivariable model obtained using penalized logistic regression with stable iterative variable selection at 26-28 weeks included HSD17B1, together with PLGF, PAPPA and the mother's BMI. While the area under the ROC curve of the model was higher than that of the adjusted PLGF, the difference was not statistically significant. In summary, the serum concentration of HSD17B1 correlated with PAPPA, another protein expressed in syncytiotrophoblasts, and with mother's weight and BMI but could not be considered as an independent marker for PE.

6.
Article in English | MEDLINE | ID: mdl-38597875

ABSTRACT

OBJECTIVES: Although deep learning has demonstrated substantial potential in automatic quantification of joint damage in rheumatoid arthritis (RA), evidence for detecting longitudinal changes at an individual patient level is lacking. Here, we introduce and externally validate our automated RA scoring algorithm (AuRA), and demonstrate its utility for monitoring radiographic progression in a real-world setting. METHODS: The algorithm, originally developed during the Rheumatoid Arthritis 2-Dialogue for Reverse Engineering Assessment and Methods (RA2-DREAM) challenge, was trained to predict expert-curated Sharp-van der Heijde total scores in hand and foot radiographs from two previous clinical studies (n = 367). We externally validated AuRA against data (n = 205) from Turku University Hospital and compared the performance against two top-performing RA2-DREAM solutions. Finally, for 54 patients, we extracted additional radiograph sets from another control visit to the clinic (average time interval of 4.6 years). RESULTS: In the external validation cohort, with a root-mean-square-error (RMSE) of 23.6, AuRA outperformed both top-performing RA2-DREAM algorithms (RMSEs 35.0 and 35.6). The improved performance was explained mostly by lower errors at higher expert-assessed scores. The longitudinal changes predicted by our algorithm were significantly correlated with changes in expert-assessed scores (Pearson's R = 0.74, p< 0.001). CONCLUSION: AuRA had the best external validation performance and demonstrated potential for detecting longitudinal changes in joint damage. Available in https://hub.docker.com/r/elolab/aura, our algorithm can easily be applied for automatic detection of radiographic progression in the future, reducing the need for laborious manual scoring.

7.
Eur Urol Open Sci ; 62: 140-150, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38500636

ABSTRACT

Background: Although prostate cancer (PCa) is the most common cancer in men in Western countries, there is significant variability in geographical incidence. This might result from genetic factors, discrepancies in screening policies, or differences in lifestyle. Gut microbiota has recently been associated with cancer progression, but its role in PCa is unclear. Objective: Characterization of the gut microbiota and its functions associated with PCa. Design setting and participants: In a prospective multicenter clinical trial (NCT02241122), the gut microbiota profiles of 181 men with a clinical suspicion of PCa were assessed utilizing 16S rRNA sequencing. Outcome measurements and statistical analysis: Sequences were assigned to operational taxonomic units, differential abundance analysis, and α- and ß-diversities, and predictive functional analyses were performed. Plasma steroid hormone levels corresponding to the predicted microbiota steroid hormone biosynthesis profiles were investigated. Results and limitations: Of 364 patients, 181 were analyzed, 60% of whom were diagnosed with PCa. Microbiota composition and diversity were significantly different in PCa, partially affected by Prevotella 9, the most abundant genus of the cohort, and significantly higher in PCa patients. Predictive functional analyses revealed higher 5-α-reductase, copper absorption, and retinol metabolism in the PCa-associated microbiome. Plasma testosterone was associated negatively with the predicted microbial 5-α-reductase level. Conclusions: Gut microbiota of the PCa patients differed significantly compared with benign individuals. Microbial 5-α-reductase, copper absorption, and retinol metabolism are potential mechanisms of action. These findings support the observed association of lifestyle, geography, and PCa incidence. Patient summary: In this report, we found that several microbes and potential functions of the gut microbiota are altered in prostate cancer compared with benign cases. These findings suggest that gut microbiota could be the link between environmental factors and prostate cancer.

8.
Cell Rep ; 42(12): 113469, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039135

ABSTRACT

The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.


Subject(s)
Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-pim-1 , Animals , Mice , Humans , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Signal Transduction , Hematopoiesis , Cell Differentiation , Th17 Cells/metabolism
9.
Sci Rep ; 13(1): 20661, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001145

ABSTRACT

This study aims to develop and validate a modeling framework to predict long-term weight change on the basis of self-reported weight data. The aim is to enable focusing resources of health systems on individuals that are at risk of not achieving their goals in weight loss interventions, which would help both health professionals and the individuals in weight loss management. The weight loss prediction models were built on 327 participants, aged 21-78, from a Finnish weight coaching cohort, with at least 9 months of self-reported follow-up weight data during weight loss intervention. With these data, we used six machine learning methods to predict weight loss after 9 months and selected the best performing models for implementation as modeling framework. We trained the models to predict either three classes of weight change (weight loss, insufficient weight loss, weight gain) or five classes (high/moderate/insufficient weight loss, high/low weight gain). Finally, the prediction accuracy was validated with an independent cohort of overweight UK adults (n = 184). Of the six tested modeling approaches, logistic regression performed the best. Most three-class prediction models achieved prediction accuracy of > 50% already with half a month of data and up to 97% with 8 months. The five-class prediction models achieved accuracies from 39% (0.5 months) to 89% (8 months). Our approach provides an accurate prediction method for long-term weight loss, with potential for easier and more efficient management of weight loss interventions in the future. A web application is available: https://elolab.shinyapps.io/WeightChangePredictor/ .The trial is registered at clinicaltrials.gov/ct2/show/NCT04019249 (Clinical Trials Identifier NCT04019249), first posted on 15/07/2019.


Subject(s)
Obesity , Overweight , Adult , Humans , Obesity/therapy , Self Report , Weight Loss , Weight Gain
10.
PLoS Comput Biol ; 19(8): e1010727, 2023 08.
Article in English | MEDLINE | ID: mdl-37566612

ABSTRACT

The sequence contexts of genomic variants play important roles in understanding biological significances of variants and potential sequencing related variant calling issues. However, methods for assessing the diverse sequence contexts of genomic variants such as tandem repeats and unambiguous annotations have been limited. Herein, we describe the Variant Sequence Context Annotation Tool (VarSCAT) for annotating the sequence contexts of genomic variants, including breakpoint ambiguities, flanking bases of variants, wildtype/mutated DNA sequences, variant nomenclatures, distances between adjacent variants, tandem repeat regions, and custom annotation with user customizable options. Our analyses demonstrate that VarSCAT is more versatile and customizable than the currently available methods or strategies for annotating variants in short tandem repeat (STR) regions or insertions and deletions (indels) with breakpoint ambiguity. Variant sequence context annotations of high-confidence human variant sets with VarSCAT revealed that more than 75% of all human individual germline and clinically relevant indels have breakpoint ambiguities. Moreover, we illustrate that more than 80% of human individual germline small variants in STR regions are indels and that the sizes of these indels correlated with STR motif sizes. VarSCAT is available from https://github.com/elolab/VarSCAT.


Subject(s)
Genomics , INDEL Mutation , Humans , INDEL Mutation/genetics , Genomics/methods , Software , High-Throughput Nucleotide Sequencing
11.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37624916

ABSTRACT

MOTIVATION: Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be modelled using trajectory inference methods. While tremendous effort has been put into designing these methods, inferring accurate trajectories automatically remains difficult. Therefore, the standard approach involves testing different trajectory inference methods and picking the trajectory giving the most biologically sensible model. As the default parameters are often suboptimal, their tuning requires methodological expertise. RESULTS: We introduce Totem, an open-source, easy-to-use R package designed to facilitate inference of tree-shaped trajectories from single-cell data. Totem generates a large number of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity enables to visually pinpoint branching points and milestones relevant to the trajectory. Furthermore, testing different trajectories with Totem is fast, easy, and does not require in-depth methodological knowledge. AVAILABILITY AND IMPLEMENTATION: Totem is available as an R package at https://github.com/elolab/Totem.


Subject(s)
Cell Differentiation , Cluster Analysis
12.
Diabetologia ; 66(11): 1983-1996, 2023 11.
Article in English | MEDLINE | ID: mdl-37537394

ABSTRACT

AIMS/HYPOTHESIS: There is a growing need for markers that could help indicate the decline in beta cell function and recognise the need and efficacy of intervention in type 1 diabetes. Measurements of suitably selected serum markers could potentially provide a non-invasive and easily applicable solution to this challenge. Accordingly, we evaluated a broad panel of proteins previously associated with type 1 diabetes in serum from newly diagnosed individuals during the first year from diagnosis. To uncover associations with beta cell function, comparisons were made between these targeted proteomics measurements and changes in fasting C-peptide levels. To further distinguish proteins linked with the disease status, comparisons were made with measurements of the protein targets in age- and sex-matched autoantibody-negative unaffected family members (UFMs). METHODS: Selected reaction monitoring (SRM) mass spectrometry analyses of serum, targeting 85 type 1 diabetes-associated proteins, were made. Sera from individuals diagnosed under 18 years (n=86) were drawn within 6 weeks of diagnosis and at 3, 6 and 12 months afterwards (288 samples in total). The SRM data were compared with fasting C-peptide/glucose data, which was interpreted as a measure of beta cell function. The protein data were further compared with cross-sectional SRM measurements from UFMs (n=194). RESULTS: Eleven proteins had statistically significant associations with fasting C-peptide/glucose. Of these, apolipoprotein L1 and glutathione peroxidase 3 (GPX3) displayed the strongest positive and inverse associations, respectively. Changes in GPX3 levels during the first year after diagnosis indicated future fasting C-peptide/glucose levels. In addition, differences in the levels of 13 proteins were observed between the individuals with type 1 diabetes and the matched UFMs. These included GPX3, transthyretin, prothrombin, apolipoprotein C1 and members of the IGF family. CONCLUSIONS/INTERPRETATION: The association of several targeted proteins with fasting C-peptide/glucose levels in the first year after diagnosis suggests their connection with the underlying changes accompanying alterations in beta cell function in type 1 diabetes. Moreover, the direction of change in GPX3 during the first year was indicative of subsequent fasting C-peptide/glucose levels, and supports further investigation of this and other serum protein measurements in future studies of beta cell function in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Adolescent , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 2/metabolism , C-Peptide , Proteomics , Cross-Sectional Studies , Fasting , Glucose , Insulin/metabolism , Blood Glucose/metabolism
13.
Sci Rep ; 13(1): 12943, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558753

ABSTRACT

Frequent laboratory monitoring is recommended for early identification of toxicity when initiating conventional synthetic disease-modifying antirheumatic drugs (csDMARDs). We aimed at developing a risk prediction model to individualize laboratory testing at csDMARD initiation. We identified inflammatory joint disease patients (N = 1196) initiating a csDMARD in Turku University Hospital 2013-2019. Baseline and follow-up safety monitoring results were drawn from electronic health records. For rheumatoid arthritis patients, diagnoses and csDMARD initiation/cessation dates were manually confirmed. Primary endpoint was alanine transaminase (ALT) elevation of more than twice the upper limit of normal (ULN) within 6 months after treatment initiation. Computational models for predicting incident ALT elevations were developed using Lasso Cox proportional hazards regression with stable iterative variable selection (SIVS) and were internally validated against a randomly selected test cohort (1/3 of the data) that was not used for training the models. Primary endpoint was reached in 82 patients (6.9%). Among baseline variables, Lasso model with SIVS predicted subsequent ALT elevations of > 2 × ULN using higher ALT, csDMARD other than methotrexate or sulfasalazine and psoriatic arthritis diagnosis as important predictors, with a concordance index of 0.71 in the test cohort. Respectively, at first follow-up, in addition to baseline ALT and psoriatic arthritis diagnosis, also ALT change from baseline was identified as an important predictor resulting in a test concordance index of 0.72. Our computational model predicts ALT elevations after the first follow-up test with good accuracy and can help in optimizing individual testing frequency.


Subject(s)
Antirheumatic Agents , Arthritis, Psoriatic , Arthritis, Rheumatoid , Humans , Alanine Transaminase/blood , Antirheumatic Agents/adverse effects , Arthritis, Psoriatic/drug therapy , Arthritis, Rheumatoid/drug therapy , Methotrexate/adverse effects , Treatment Outcome
14.
Acta Orthop ; 94: 215-223, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37140202

ABSTRACT

BACKGROUND AND PURPOSE: Periprosthetic joint infection (PJI) is the commonest reason for revision after total knee arthroplasty (TKA). We assessed the risk factors for revision due to PJI following TKA based on the Finnish Arthroplasty Register (FAR). PATIENTS AND METHODS: We analyzed 62,087 primary condylar TKAs registered between June 2014 and February 2020 with revision for PJI as the endpoint. Cox proportional hazards regression was used to estimate hazard ratios (HR) with 95% confidence intervals (CI) for the first PJI revision using 25 potential patient- and surgical-related risk factors as covariates. RESULTS: 484 knees were revised for the first time during the first postoperative year because of PJI. The HRs for revision due to PJI in unadjusted analysis were 0.5 (0.4-0.6) for female sex, 0.7 (0.6-1.0) for BMI 25-29, and 1.6 (1.1-2.5) for BMI > 40 compared with BMI < 25, 4.0 (1.3-12) for preoperative fracture diagnosis compared with osteoarthritis, and 0.7 (0.5-0.9) for use of an antimicrobial incise drape. In adjusted analysis the HRs were 2.2 (1.4-3.5) for ASA class III-IV compared with class I, 1.7 (1.4-2.1) for intraoperative bleeding ≥ 100 mL, 1.4 (1.2-1.8) for use of a drain, 0.7 (0.5-1.0) for short duration of operation of 45-59 minutes, and 1.7 (1.3-2.3) for long operation duration > 120 min compared with 60-89 minutes, and 1.3 (1.0-1.8) for use of general anesthesia. CONCLUSION: We found increased risk for revision due to PJI when no incise drape was used. The use of drainage also increased the risk. Specializing in performing TKA reduces operative time and thereby also the PJI rate.


Subject(s)
Arthritis, Infectious , Arthroplasty, Replacement, Knee , Prosthesis-Related Infections , Humans , Female , Arthroplasty, Replacement, Knee/adverse effects , Finland/epidemiology , Prosthesis-Related Infections/epidemiology , Prosthesis-Related Infections/etiology , Prosthesis-Related Infections/surgery , Risk Factors , Knee , Reoperation/adverse effects , Arthritis, Infectious/etiology , Arthritis, Infectious/surgery , Retrospective Studies
15.
EBioMedicine ; 92: 104625, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37224769

ABSTRACT

BACKGROUND: Type 1 diabetes is a complex heterogenous autoimmune disease without therapeutic interventions available to prevent or reverse the disease. This study aimed to identify transcriptional changes associated with the disease progression in patients with recent-onset type 1 diabetes. METHODS: Whole-blood samples were collected as part of the INNODIA study at baseline and 12 months after diagnosis of type 1 diabetes. We used linear mixed-effects modelling on RNA-seq data to identify genes associated with age, sex, or disease progression. Cell-type proportions were estimated from the RNA-seq data using computational deconvolution. Associations to clinical variables were estimated using Pearson's or point-biserial correlation for continuous and dichotomous variables, respectively, using only complete pairs of observations. FINDINGS: We found that genes and pathways related to innate immunity were downregulated during the first year after diagnosis. Significant associations of the gene expression changes were found with ZnT8A autoantibody positivity. Rate of change in the expression of 16 genes between baseline and 12 months was found to predict the decline in C-peptide at 24 months. Interestingly and consistent with earlier reports, increased B cell levels and decreased neutrophil levels were associated with the rapid progression. INTERPRETATION: There is considerable individual variation in the rate of progression from appearance of type 1 diabetes-specific autoantibodies to clinical disease. Patient stratification and prediction of disease progression can help in developing more personalised therapeutic strategies for different disease endotypes. FUNDING: A full list of funding bodies can be found under Acknowledgments.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Humans , Transcriptome , Disease Progression , Autoantibodies
16.
Crit Care ; 27(1): 112, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927455

ABSTRACT

BACKGROUND: The use of glucocorticoids has given contradictory results for treating acute respiratory distress syndrome (ARDS). The use of intravenous Interferon beta (IFN ß) for the treatment of ARDS was recently tested in a phase III ARDS trial (INTEREST), in which more than half of the patients simultaneously received glucocorticoids. Trial results showed deleterious effects of glucocorticoids when administered together with IFN ß, and therefore, we aimed at finding the reason behind this. METHODS: We first sequenced the genes encoding the IFN α/ß receptor of the patients, who participated in the INTEREST study (ClinicalTrials.gov Identifier:  NCT02622724 , November 24, 2015) in which the patients were randomized to receive an intravenous injection of IFN ß-1a (144 patients) or placebo (152 patients). Genetic background was analyzed against clinical outcome, concomitant medication, and pro-inflammatory cytokine levels. Thereafter, we tested the influence of the genetic background on IFN α/ß receptor expression in lung organ cultures and whether, it has any effect on transcription factors STAT1 and STAT2 involved in IFN signaling. RESULTS: We found a novel disease association of a SNP rs9984273, which is situated in the interferon α/ß receptor subunit 2 (IFNAR2) gene in an area corresponding to a binding motif of the glucocorticoid receptor (GR). The minor allele of SNP rs9984273 associates with higher IFNAR expression, more rapid decrease of IFN γ and interleukin-6 (IL-6) levels and better outcome in IFN ß treated patients with ARDS, while the major allele associates with a poor outcome especially under concomitant IFN ß and glucocorticoid treatment. Moreover, the minor allele of rs9984273 associates with a less severe form of coronavirus diseases (COVID-19) according to the COVID-19 Host Genetics Initiative database. CONCLUSIONS: The distribution of this SNP within clinical study arms may explain the contradictory results of multiple ARDS studies and outcomes in COVID-19 concerning type I IFN signaling and glucocorticoids.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , COVID-19/genetics , Interferon-beta/pharmacology , Interferon-beta/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/genetics , Interferon-alpha
17.
BMC Geriatr ; 23(1): 80, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750784

ABSTRACT

BACKGROUND: Various indexes have been developed to estimate the risk for mortality, institutionalization, and other adverse outcomes for older people. Most indexes are based on a large number of clinical or laboratory parameters. An index based on only a few parameters would be more practical to use in every-day clinical practice. Our aim was to create an index to predict the risk for mortality and institutionalization with as few parameters as possible without compromising their predictive ability. METHODS: A prospective study with a 10-year follow-up period. Thirty-six clinical and fourteen laboratory parameters were combined to form an index. Cox regression model was used to analyze the association of the index with institutionalization and mortality. A backward statistical method was used to reduce the number of parameters to form an easy-to-use index for predicting institutionalization and mortality. RESULTS: The mean age of the participants (n = 1172) was 73.1 (SD 6.6, range 64‒97) years. Altogether, 149 (14%) subjects were institutionalized, and 413 (35%) subjects deceased during the follow-up. Institutionalization and mortality rates increased as index scores increased both for the large 50-parameter combined index and for the reduced indexes. After a backward variable selection in the Cox regression model, three clinical parameters remained in the index to predict institutionalization and six clinical and three laboratory parameters in the index to predict mortality. The reduced indexes showed a slightly better predictive value for both institutionalization and mortality compared to the full index. CONCLUSIONS: A large index with fifty parameters included many unimportant parameters that did not increase its predictive value, and therefore could be replaced with a reduced index with only a few carefully chosen parameters, that were individually associated with institutionalization or death.


Subject(s)
Institutionalization , Humans , Aged , Aged, 80 and over , Follow-Up Studies , Prospective Studies
18.
Heliyon ; 9(2): e13147, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36718152

ABSTRACT

Background: In coeliac disease (CoD), the role of B-cells has mainly been considered to be production of antibodies. The functional role of B-cells has not been analysed extensively in CoD. Methods: We conducted a study to characterize gene expression in B-cells from children developing CoD early in life using samples collected before and at the diagnosis of the disease. Blood samples were collected from children at risk at 12, 18, 24 and 36 months of age. RNA from peripheral blood CD19+ cells was sequenced and differential gene expression was analysed using R package Limma. Findings: Overall, we found one gene, HNRNPL, modestly downregulated in all patients (logFC -0·7; q = 0·09), and several others downregulated in those diagnosed with CoD already by the age of 2 years. Interpretation: The data highlight the role of B-cells in CoD development. The role of HNRPL in suppressing enteroviral replication suggests that the predisposing factor for both CoD and enteroviral infections is the low level of HNRNPL expression. Funding: EU FP7 grant no. 202063, EU Regional Developmental Fund and research grant PRG712, The Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research (SyMMyS) 2012-2017, grant no. 250114) and, AoF Personalized Medicine Program (grant no. 292482), AoF grants 292335, 294337, 319280, 31444, 319280, 329277, 331790) and grants from the Sigrid Jusélius Foundation (SJF).

19.
Nat Commun ; 13(1): 7877, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550114

ABSTRACT

Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, and has only few time points and biological replicates. To address this need, we provide a comprehensive evaluation of several existing differential expression methods for high-throughput longitudinal omics data and introduce a Robust longitudinal Differential Expression (RolDE) approach. The methods are evaluated using over 3000 semi-simulated spike-in proteomics datasets and three large experimental datasets. In the comparisons, RolDE performs overall best; it is most tolerant to missing values, displays good reproducibility and is the top method in ranking the results in a biologically meaningful way. Furthermore, RolDE is suitable for different types of data with typically unknown patterns in longitudinal expression and can be applied by non-experienced users.


Subject(s)
Benchmarking , Proteomics , Proteomics/methods , Reproducibility of Results
20.
Nucleic Acids Res ; 50(20): 11470-11491, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36259644

ABSTRACT

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.


Subject(s)
Endoribonucleases , Germ Cell Ribonucleoprotein Granules , Spermatogenesis , Transcriptome , Animals , Male , Mice , Germ Cells/metabolism , RNA, Small Interfering/genetics , Spermatids/metabolism , Spermatogenesis/genetics , Endoribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...