Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131554, 2024 May.
Article in English | MEDLINE | ID: mdl-38615864

ABSTRACT

Cuttlefish bone biowaste is a potential source of a composite matrix based on chitin and aragonite. In the present work, we propose for the first time the elaboration of biocomposites based on chitosan and aragonite through the valorization of bone waste. The composition of the ventral and dorsal surfaces of bone is well studied by ICP-OES. An extraction process has been applied to the dorsal surface to extract ß-chitin and chitosan with controlled physico-chemical characteristics. In parallel, aragonite isolation was carried out on the ventral side. The freeze-drying method was used to incorporate aragonite into the chitosan polymer to form CHS/ArgS biocomposites. Physicochemical characterizations were performed by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, potentiometry and viscometry. The ICP-OES method was used to evaluate in vitro the bioactivity level of biocomposite in simulated human plasma (SBF), enabling analysis of the interactions between the material and SBF. The results obtained indicate that the CHS/ArgS biocomposite derived from cuttlefish bone exhibits bioactivity, and that chitosan enhances the bioactivity of aragonite. The CHS/ArgS biocomposite showed excellent ability to form an apatite layer on its surface. After three days' immersion, FTIR and SEM analyses confirmed the formation of this layer.


Subject(s)
Biocompatible Materials , Calcium Carbonate , Chitosan , Decapodiformes , Chitosan/chemistry , Decapodiformes/chemistry , Animals , Calcium Carbonate/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone and Bones/chemistry , Spectroscopy, Fourier Transform Infrared , Chemical Phenomena , Humans
2.
Int J Biol Macromol ; 252: 126292, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37573901

ABSTRACT

The majority of studies have focused on the industrial exploitation of marine fisheries waste through the production of natural bioactive bioploymeres such as chitin and chitosan. However, in recent years, beetles are increasingly attracting the interest of scientists as a source of chitin and chitosan for the preparation of hydrogels for sustainable engineering development. In the present work, we focus on the study for the first time a new Moroccan species of beetle (Akis granulifera Sahlberg, 1823), for the extraction of chitin and the elaboration of chitosan. A chemical extraction process was used. Then, physicochemical characterizations by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, Potentiometry, Viscosimetry, and elemental analysis were performed. In addition, to evaluate its physicochemical quality, the elaborated chitosan is combined with alginate to form a hydrogel. This hydrogel was effectively characterized by SEM, DRX and FTIR to show the potential of chitosan from Akis granulifera in biomaterial applications.


Subject(s)
Chitosan , Coleoptera , Animals , Chitosan/chemistry , Chitin/chemistry , Coleoptera/chemistry , Hydrogels/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...