Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(15): e2304774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37523329

ABSTRACT

Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.


Subject(s)
Immunity, Innate , Macrophages , Humans , Macrophages/metabolism , Anti-Bacterial Agents/metabolism , Adaptive Immunity , Recurrence
2.
Adv Mater ; 35(51): e2304296, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37587307

ABSTRACT

Tumor-associated macrophage (TAM) reprogramming is a promising therapeutic approach for cancer immunotherapy; however, its efficacy remains modest due to the low bioactivity of the recombinant cytokines used for TAM reprogramming. mRNA therapeutics are capable of generating fully functional proteins for various therapeutic purposes but accused for its poor sustainability. Inspired by kinetic energy recovery systems (KERS) in hybrid vehicles, a cytokine efficacy recovery system (CERS) is designed to substantially augment the therapeutic index of mRNA-based tumor immunotherapy via a "capture and stabilize" mechanism exerted by a nanostructured mineral coating carrying therapeutic cytokine mRNA. CERS remarkably recycles nearly 40% expressed cytokines by capturing them onto the mineral coating to extend its therapeutic timeframe, further polarizing the macrophages to strengthen their tumoricidal activity and activate adaptive immunity against tumors. Notably, interferon-γ (IFN-γ) produced by CERS exhibits ≈42-fold higher biological activity than recombinant IFN-γ, remarkably decreasing the required IFN-γ dosage for TAM reprogramming. In tumor-bearing mice, IFN-γ cmRNA@CERS effectively polarizes TAMs to inhibit osteosarcoma progression. When combined with the PD-L1 monoclonal antibody, IFN-γ cmRNA@CERS significantly boosts antitumor immune responses, and substantially prevents malignant lung metastases. Thus, CERS-mediated mRNA delivery represents a promising strategy to boost antitumor immunity for tumor treatment.


Subject(s)
Cellular Reprogramming Techniques , Cytokines , Interferon-gamma , Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Immunotherapy , Interferon-gamma/genetics , Interferon-gamma/metabolism , Recombinant Proteins , RNA, Messenger/genetics , Cellular Reprogramming , Neoplasms/therapy
3.
Research (Wash D C) ; 6: 0086, 2023.
Article in English | MEDLINE | ID: mdl-37223474

ABSTRACT

Platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor receptor-ß (PDGFR-ß) pathway is conventionally considered as an important pathway to promote osteogenesis; however, recent study suggested its role during osteogenesis to be controversial. Regarding the differential functions of this pathway during 3 stages of bone healing, we hypothesized that temporal inhibition of PDGF-BB/PDGFR-ß pathway could shift the proliferation/differentiation balance of skeletal stem and progenitor cells, toward osteogenic lineage, which leads to improved bone regeneration. We first validated that inhibition of PDGFR-ß at late stage of osteogenic induction effectively enhanced differentiation toward osteoblasts. This effect was also replicated in vivo by showing accelerated bone formation when block PDGFR-ß pathway at late stage of critical bone defect healing mediated using biomaterials. Further, we found that such PDGFR-ß inhibitor-initiated bone healing was also effective in the absence of scaffold implantation when administrated intraperitoneally. Mechanistically, timely inhibition of PDGFR-ß blocked extracellular regulated protein kinase 1/2 pathway, which shift proliferation/differentiation balance of skeletal stem and progenitor cell to osteogenic lineage by upregulating osteogenesis-related products of Smad to induce osteogenesis. This study offered updated understanding of the use of PDGFR-ß pathway and provides new insight routes of action and novel therapeutic methods in the field of bone repair.

4.
Bioact Mater ; 23: 508-523, 2023 May.
Article in English | MEDLINE | ID: mdl-36514387

ABSTRACT

Insufficient infiltration of T cells severely compromises the antitumor efficacy of adoptive cell therapy (ACT) against solid tumors. Here, we present a facile immune cell surface engineering strategy aiming to substantially enhance the anti-tumor efficacy of Th9-mediated ACT by rapidly identifying tumor-specific binding ligands and improving the infiltration of infused cells into solid tumors. Non-genetic decoration of Th9 cells with tumor-targeting peptide screened from phage display not only allowed precise targeted ACT against highly heterogeneous solid tumors but also substantially enhanced infiltration of CD8+ T cells, which led to improved antitumor outcomes. Mechanistically, infusion of Th9 cells modified with tumor-specific binding ligands facilitated the enhanced distribution of tumor-killing cells and remodeled the immunosuppressive microenvironment of solid tumors via IL-9 mediated immunomodulation. Overall, we presented a simple, cost-effective, and cell-friendly strategy to enhance the efficacy of ACT against solid tumors with the potential to complement the current ACT.

SELECTION OF CITATIONS
SEARCH DETAIL
...