Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14891, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937501

ABSTRACT

Aiming to extend the scope of utilizing glass in radiation shielding, this work investigates the radiation interaction response of a borate-based glass system. Four borate-glass samples of different substituting concentrations of calcium oxide ( 70 - x )B2O3: 10 Na2O : 5 Al2O3 : 15 BaO: x CaO were prepared. To assess the shielding performance of the prepared glass samples, a high-purity germanium detector and different radioactive sources (different energies) were used. Via the narrow beam method, the linear attenuation coefficients (LACs) were experimentally measured. So, the transmission factor (TF), the half-value layer (HVL), the tenth value layer (TVL), the mean free path (MFP), and the radiation protection efficiency (RPE) were calculated for all prepared samples. It was observed that the increase of the concentration of calcium oxide in the proposed borate-based glass samples leads to improve their performance in shielding against radiation. At low energy, the RPE of the samples is almost 100%. However, it was observed that as energy of the radiation source increases, the shielding performance of the samples will decrease. High energy dependence was found when calculating TF, HVL, TVL, and MFP. They were increased with the increase of the energy of the incident photons. At 0.662 MeV, the TF values are equal to 79.26, 79.00, 79.72, and 78.43% for BNABC-1, BNABC-2, BNABC-3, and BNABC-4 in the same oder, respectively. The application of the proposed composition of borate-based glass as a transparent shield against low-energy ionizing radiation was highlighted.

2.
Sci Rep ; 14(1): 10014, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693293

ABSTRACT

The current work discusses the radiation attenuation capability and different shielding characteristics of different mortar samples. The samples were prepared by replacing different percentages of fine aggregate with iron filling and replacing different percentages of hydrated lime with Bi2O3 (0-50 wt.%). The prepared mortar samples are coded as CHBFX where X = 0, 10, 30, and 50 wt.%. The mass and linear attenuation coefficient was determined experimentally using a narrow beam technique, where a high purity germanium detector, and different point gamma-ray sources (such as Am-241, Cs-137, and Co-60). The linear attenuation coefficient was also calculated using the Monte-Carlo simulation code and the online Phy-X/PSD software. The comparison of the three methods showed a good agreement in the results. The linear attenuation coefficient drops from 19.821 to 0.053 cm-1 for CHBF0, from 27.496 to 0.057 cm-1 for CHBF10, from 42.351 to 0.064 cm-1 for CHBF30, and from 55.068 to 0.071 cm-1 for CHBF50 at photon energy range from 0.015 to 15 MeV. The half-value layer thickness, tenth-value layer thickness, and mean free path of the prepared mortar composites were also calculated photon energy ranged from 0.015 to 15 MeV. The fast neutron removal cross-section of the prepared CHBFX mortar samples have values of 0.096 cm-1, 0.098 cm-1, 0.103 cm-1, and 0.107 cm-1 for the mortar samples CHBF0, CHBF10, CHBF30, and CHBF50, respectively. The results showed that the mortar sample with the highest iron filing concentration, CHBF50, provides the best protection against gamma rays and fast neutrons which could be used in the nuclear and medical fields.

3.
Sci Rep ; 13(1): 18429, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891224

ABSTRACT

With the use of multilayer materials such as concrete, mortar and ceramics that were fortified with PbO, WO3 and Bi2O3 nanoparticles, our study's objective was to produce a an effective photon shielding system. Experimental evaluation of the radiation shielding efficiency of two sets of samples with various thicknesses was conducted. The elemental content and morphology of the samples were corroborated by SEM and EDX studies, with ceramic samples exhibiting superior particle distribution and fewer voids than concrete and mortar specimens. The linear attenuation coefficient (LAC) was studied both experimentally and numerically using the Phy-X program, and it was found that the two sets of values were in satisfactory agreement. The values of LAC were consistently greater for samples with 30% of the selected heavy metal oxides than for those with 10%. The LAC for Cer-1 was 5.003 cm-1 at 0.059 MeV, whereas the corresponding LAC for Cer-2 was 2.123 cm-1. The LAC values were as follows: ceramics (5.003 cm-1), mortar (2.999 cm-1), concrete (2.733 cm-1), and the transmission factor (TF) examination of the multiple-layer specimens showed that the TF of the 3 cm thick multilayer sample was lower than that of the 2 cm thick sample and that both multilayer samples displayed better attenuation efficiency in comparison to single-layer specimens. The results show the possibility for employing multilayer structures with different densities, thicknesses, and sizes in suitable radiation shielding applications.

4.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447530

ABSTRACT

This study aims to investigate the impact of CeO2 content and particle size on the radiation shielding abilities of polydimethylsiloxane, also known as silicon rubber (SR). We prepared different SR samples with 10, 30, and 50% of micro and nano CeO2 and we measured the linear attenuation coefficient (LAC) for these samples. We found that the LAC of the SR increases by increasing the CeO2 and all prepared SR samples had higher LACs than the pure SR. We examined the effect of the size of the particles on the LAC and the results demonstrated that the LAC for nano CeO2 is higher than that of micro CeO2. We investigated the half value layer (HVL) for the prepared SR samples and the results revealed that the SR with 10% micro CeO2 had a greater HVL than the SR with 10% nano CeO2. The HVL results demonstrated that the SR containing nanoparticles had higher attenuation effectiveness than the SR with micro CeO2. We also prepared SR samples containing CeO2 in both sizes (i.e., micro and nano) and we found that the HVL of the SR containing both sizes was lower than the HVL of the SR with nano CeO2. The radiation protection efficiency (RPE) at 0.059 MeV for the SR with 10% micro and nano CeO2 was 94.2 and 95.6%, respectively, while the RPE of SR containing both sizes (5% micro CeO2 + 5% micro CeO2) was 96.1% at the same energy. The RPE results also indicated that the attenuation ability was improved when utilizing the micro and nano CeO2 as opposed to the micro CeO2 or nano CeO2 at 0.662, 1.173, and 1.333 MeV.

5.
Polymers (Basel) ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177306

ABSTRACT

This study aimed to prepare silicone rubber composites with heavy metal oxide nanoparticles for gamma ray shielding applications. Different heavy metal oxide nanoparticles were incorporated into the silicone rubber matrix, and the prepared composites were characterized for their thermal, mechanical, and radiation shielding properties. The density of the prepared SR samples ranged from 1.25 to 2.611 g·cm-3, with SR-2 having the highest density due to the presence of lead oxide. Additionally, the thermal stability of the materials improved with the addition of HMO nanoparticles, as indicated by TGA results. The prepared SR materials showed ultimate deformation displacement ranging from 14.17 to 21.23 mm, with the highest value recorded for SR-3 and the lowest for SR-2. We investigated the transmission factor (TF) of gamma rays through silicone rubber (SR) composites with different heavy metal oxide (HMO) nanoparticles. The addition of HMOs resulted in a decrease in TF values, indicating improved radiation shielding performance. The TF was found to be lowest in SR-5, which contained 15% of Bi2O3, WO3, BaO, and Zr2O3 each. The linear attenuation coefficient (LAC) of the SR samples was also evaluated, and it was found that the incorporation of HMOs increased the probability of photon interactions, leading to improved radiation protection effectiveness. The half-value layer (HVL) of the SR samples was also examined, and it was found that the addition of HMOs resulted in a significant reduction in HVL values, particularly at low energy levels. SR-5 had the lowest HVL among the group, while SR-2, SR-3, and SR-4 had higher HVL values. These results demonstrate the effectiveness of using HMOs in enhancing the radiation shielding properties of SR composites, particularly for low-energy gamma rays.

6.
Materials (Basel) ; 16(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37110089

ABSTRACT

This study aimed to develop a mortar composite with improved gamma ray shielding properties using WO3 and Bi2O3 nanoparticles, as well as granite residue as a partial replacement of sand. The physical properties and effects of sand substitution and nanoparticle addition on the mortar composite were analyzed. TEM analysis confirmed the size of Bi2O3 and WO3 NPs to be 40 ± 5 nm and 35 ± 2 nm, respectively. SEM images showed that increasing the percentage of granite residues and nanoparticles improved the homogeneity of the mixture and decreased the percentage of voids. TGA analysis indicated that the thermal properties of the material improved with the increase in nanoparticles, without decreasing the material weight at higher temperatures. The linear attenuation coefficients were reported and we found that the LAC value at 0.06 MeV increases by a factor of 2.47 when adding Bi2O3, while it is enhanced by a factor of 1.12 at 0.662 MeV. From the LAC data, the incorporation of Bi2O3 nanoparticles can greatly affect the LAC at low energies, and still have a small but noticeable effect at higher energies. The addition of Bi2O3 nanoparticles into the mortars led to a decrease in the half value layer, resulting in excellent shielding properties against gamma rays. The mean free path of the mortars was found to increase with increasing photon energy, but the addition of Bi2O3 led to a decrease in MFP and better attenuation, making the CGN-20 mortar the most ideal in terms of shielding ability among the prepared mortars. Our findings on the improved gamma ray shielding properties of the developed mortar composite have promising implications for radiation shielding applications and granite waste recycling.

7.
Sci Rep ; 13(1): 5472, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37015994

ABSTRACT

We developed new composites for photons shielding applications. The composite were prepared with epoxy resin, red clay and bismuth oxide nanoparticles (Bi2O3 NPs). In order to establish which ratio of red clay to Bi2O3 NPs provides the best shielding capabilities, several different ratios of red clay to Bi2O3 NPs were tested. The transmission factor (TF) was calculated for two different thicknesses of each sample. From the TF data, we found that epoxy resin materials have a high attenuation capacity at low energy. For ERB-10 sample (40%Epoxy + 50% Red clay + 10% Bi2O3 NPs), the TF values are 52.3% and 14.3% for thicknesses of 0.5 and 1.5 cm (at 0.06 MeV). The composite which contains the maximum amount of Bi2O3 nanoparticles (40%Epoxy + 50% Red clay + 10% Bi2O3 NPs, coded as ERB-30) has lower TF than the other composites. The TF data demonstrated that ERB-30 is capable of producing more effective attenuation from gamma rays. We also determined the linear attenuation coefficient (LAC) for the prepared composites and we found that the LAC increases for a given energy in proportion to the Bi2O3 NPs ratio. For the ERB-0 (free Bi2O3 NPs), the LAC at 0.662 MeV is 0.143 cm-1, and it increases to 0.805 cm-1 when 10% of Bi2O3 NPs is added to the epoxy resin composite. The half value layer (HVL) results showed that the thickness necessary to shield that photons to its half intensity can be significantly lowered by increasing the weight fraction of the Bi2O3 NPs in the epoxy resin composite from 0 to 30%. The HVL for ERB-20 and ERB-30 were compared with other materials such as (Epoxy as a matrix material and Al2O3, Fe2O3, MgO and ZrO2 as filler oxides in the matrix at 0.662 MeV. The HVL values for ERB-20 and ERB-30 are 4.385 and 3.988 cm and this is lower than all the selected epoxy polymers.

8.
Materials (Basel) ; 16(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903170

ABSTRACT

Due to the present industrial world, the risk of radioactivity is notably increasing. Thus, an appropriate shielding material needs to be designed to protect humans and the environment against radiation. In view of this, the present study aims to design new composites of the main matrix of bentonite-gypsum with a low-cost, abundant, and natural matrix. This main matrix was intercalated in various amounts with micro- and nanosized particles of bismuth oxide (Bi2O3) as the filler. Energy dispersive X-ray analysis (EDX) recognized the chemical composition of the prepared specimen. The morphology of the bentonite-gypsum specimen was tested using scanning electron microscopy (SEM). The SEM images showed the uniformity and porosity of a cross-section of samples. The NaI (Tl) scintillation detector was used with four radioactive sources (241Am, 137Cs, 133Ba, and 60Co) of various photon energies. Genie 2000 software was used to determine the area under the peak of the energy spectrum observed in the presence and absence of each specimen. Then, the linear and mass attenuation coefficients were obtained. After comparing the experimental results of the mass attenuation coefficient with the theoretical values from XCOM software, it was found that the experimental results were valid. The radiation shielding parameters were computed, including the mass attenuation coefficients (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), which are dependent on the linear attenuation coefficient. In addition, the effective atomic number and buildup factors were calculated. The results of all of these parameters provided the same conclusion, which confirms the improvement of the properties of γ-ray shielding materials using a mixture of bentonite and gypsum as the main matrix, which is much better than using bentonite alone. Moreover, bentonite mixed with gypsum is a more economical means of production. Therefore, the investigated bentonite-gypsum materials have potential uses in applications such as gamma-ray shielding materials.

9.
Materials (Basel) ; 15(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499866

ABSTRACT

The usage of radiation is mandatory for modern life; in the same manner, controlling the outflow of harmful radiation is vital and could be achieved via employing a shielding material to eliminate any potential nuclear and radiation accidents and incidents. Considering this point, this study aims to manufacture composite samples based on waste marble as novel radiation shields. The physical and radiation shielding ability of the prepared shields were determined and analyzed. For this purpose, a high-purity germanium (HPGe) detector was used to detect the incoming photons emitted from three point sources (Am-241, Cs-137, and Co-60). The radiation attenuation factors for the new marble-based composites were measured for some energies, ranging from 0.06 to 1.333 MeV. We examined the effect of increasing the PbCO3 and CdO contents on the physical properties and radiation attenuation factors of the newly developed radiation shielding absorber. We found that the density of the samples increases from 1.784 to 1.796 g/cm3 when the CdO changes from 0 to 12.5 wt%. The linear attenuation coefficient (LAC) for all marble compositions has the maximum value at 0.06 MeV, while the LAC decreases with increasing energy. The highest LAC was found for Marb-3, with a composition of waste marble (50 wt%), polyester (25 wt%), PbCO3 (17.5 wt%), and CdO (7.5 wt%). We studied the impact of the addition of CdO on the expense of PbCO3 and we found that the half value layer (HVL) decreases with increasing the CdO content. Hence, when there is no space problem, the newly developed radiation shielding absorber can be used to maintain the cost effectiveness and environmentally friendliness of products.

10.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432928

ABSTRACT

The use of radiation is mandatory in modern life, but the harms of radiation cannot be avoided. To minimize the effect of radiation, protection is required for the safety of the environment and human life. Hence, inventing a better shield than a conventional shielding material is the priority of researchers. Due to this reason, this current research deals with an innovative shielding material named EKZ samples having a composition of (epoxy resin (90-40) wt %-kaolin clay (10-25) wt %-ZnO-nano particles (0-35) wt %). The numerous compositional variations of (epoxy resin, kaolin clay, and ZnO-nano particles on the prepared EKZ samples varied the density of the samples from 1.24 to 1.95 g/cm3. The radiation shielding parameter of linear attenuation coefficient (LAC), half value layer (HVL), tenth value layer (TVL), and radiation protection efficiency (RPE) were measured to evaluate the radiation diffusion efficiency of newly made EKZ samples. These radiation shielding parameters were measured with the help of the HPGe detector utilizing the three-point sources (Am-241, Cs-137, and Co-60). The obtained results exposed that the value of linear attenuation coefficient (LAC) and radiation protection efficiency (RPE) was maximum, yet the value of half value layer (HVL), and tenth value layer (TVL), were minimum due to the greater amount of kaolin clay and ZnO-nanoparticles, whereas the amount of epoxy resin was lesser. In addition, it has been clear that as-prepared EKZ samples are suitable for low-dose shielding applications as well as EKZ-35 showed a better shielding ability.

11.
Materials (Basel) ; 15(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36143729

ABSTRACT

For extensive radiation exposure, inventing a novel radiation shielding material is a burning issue at present for the purpose of life saving. Considering this thought, in this study, by adding sundry amounts of Bi2O3 into pure high-density polyethylene (HDPE), six HDPE systems were prepared to evaluate the radiation shielding efficiency. These HDPE systems were HDPEBi-0 (pure HDPE), HDPEBi-10 (10 wt% Bi2O3), HDPEBi-20 (20 wt% Bi2O3-), HDPEBi-30 (30 wt% Bi2O3), HDPEBi-40 (40 wt% Bi2O3), and HDPEBi-50 (50 wt% Bi2O3). The values of the linear attenuation coefficients of the experimental results (calculated in the lab using HPGe) were compared with the theoretical results (obtained using Phy-X software) at 0.060, 0.662, 1.173, and 1.333 MeV energies. To ensure the accurateness of the experimental results, this comparison was made. It was crystal clear that for energy values from 0.06 MeV to 1.333 MeV, all the experimental values were in line with Phy-X software data, which demonstrated the research setup's reliability. Here, the linear attenuation coefficient (LAC), and mean free path (MFP) shielding parameters were assessed. At the energy of 1.333 MeV, sample HDPEBi-0 showed an HVL value 1.7 times greater than that of HDPEBi-50, yet it was 23 times greater at 0.0595 MeV. That means that for proper radiation protection, very-low-energy HDPE systems containing 10-50% Bi2O3 could be used; however, the thickness of the HDPE system must be increased according to the energy of incident radiation.

12.
Sci Rep ; 12(1): 15722, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127499

ABSTRACT

In this work, morphological and attenuation parameters of gamma ray protection were studied. Dimethyl polysiloxane (Silicon Rubber) Mixed with micro-size and nano-size lead oxide particles at different weight percentage were prepared. The morphological structure of PbO/SR composites was investigated by SEM test, according to SEM images the nano PbO particles are more uniform micro PbO particles. The radiation attenuation test was carried out using 3" × 3" NaI (TI) detector for (Am-241), (Cs-137), (Co-60), (Ba-133), and (Eu-152). The effect on attenuation property of SR-PbO shown that the increase of PbO filler significantly increases the linear attenuation coefficient and improve the other radiation protection parameters especially at low gamma energy. It's found that a significant agreement between the experimental result and theoretical result from Xcom program. In this study it's found matrix filled with nano-PbO have higher gamma shielding ability compared to micro-PbO matrix at the same filler concentration. It can say that SR-nano PbO has a higher radiation protection than SR-micro PbO compositions.


Subject(s)
Nanoparticles , Radiation Protection , Cesium Radioisotopes , Dimethylpolysiloxanes , Nanoparticles/chemistry , Radiation Protection/methods , Rubber , Silicon
13.
Materials (Basel) ; 15(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36143510

ABSTRACT

The aim of the current study is to investigate the impact of introducing micro- and nanoparticle MgO as a filler into epoxy resin on the radiation shielding abilities of the prepared samples. To this end, we performed a gamma-radiation spectroscopy experiment with the help of an HPGe detector and Am-241, Cs-137, and Co-60 sources. We evaluated the particle size effect (PSE) and detected the maximum PSE value with the addition of 50 wt% MgO particles, indicating that nanoparticle MgO was more successful in shielding against incoming radiation than microparticle MgO. We compared the half-value layer (HVL) for the samples with 10 wt%, 20 wt%, and 30 wt % micro-MgO and nano-MgO and found that the HVL values were lower for the nanoparticle samples than for the microparticles samples, confirming that smaller particle sizes enhanced the shielding ability of the samples against radiation. The MFP results showed that epoxy matrices containing micro-MgO, for all investigated energies, resulted in higher MFP values that those containing nano-MgO.

14.
Materials (Basel) ; 15(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013841

ABSTRACT

Silicone rubbers are a good choice for shielding materials because of having elastic and attenuating properties as well as cost-effectiveness. Thus, the aim of this study was to prepare ground-breaking silicone rubber samples by adding WO3-nanoparticles and testing the performance of their radiation shielding ability against Cs-137, Co-60, and Am-241 gamma energy. Increasing the concentration of WO3 nanoparticles in silicone rubber (SR) led to decreasing the half-value layer (HVL) and mean free path (MFP) values determined for the samples tested. Furthermore, the values of MFP and HVL upsurged according to the enhancement of the photon energy. It is noteworthy that the prepared silicone rubber (SR) systems with 50 and 60 wt% concentrations of WO3-nanoparticles displayed lower HVL than the Bi2O3-containing silicone rubber (SR) systems. In the same way, studied silicone rubber SR-W60 represented the lowest HVL comprising iron ore containing silicone rubber.

15.
Materials (Basel) ; 15(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955243

ABSTRACT

The purpose of this research is to identify the radiation shielding capability of ceramics adding CuO, CdO, and Bi2O3 with diverse wt (%). The chemical compositions of the raw ceramics were documented through Energy Dispersive X-ray "EDX" techniques. For aesthetic appeal and solidification, CuO has been chosen to be added to ceramic. Moreover, in the interest of increasing the radiation shielding ability, the high atomic number and density of both CdO and Bi2O3 were suggested for the raw ceramics. To obtain the morphological features of the prepared ceramic samples, a Scanning Electron Microscope, or SEM, was utilized. To verify the experimental results, the MCA value obtained from the Phy-X software was compared to the experimental value collected from the HPGe detector. At energies 0.06 MeV, 0.662 MeV, 1.173 MeV, and 1.333 MeV the linear and mass attenuation coefficients of the prepared ceramics have been measured using a high purity germanium "HPGe" detector as well as three different point sources. Moreover, the relationship between ln(I) and the thickness of the ceramics has been presented here, and the comparison between the LAC of the prepared ceramics with other materials has also been displayed. Bentonite ceramic containing CuO (15 mol %)-CdO (15 mol %)-Bi2O3 (20 mol %) with density 3.6 showed the lowest HVL, MFP, and TVL at all studied energies, yet pure Bentonite ceramic containing only CuO (50 mol %), having density 3.4, presented the greatest values. Hence, it can be concluded that the addition of CdO and Bi2O3 enhances the radiation shielding ability.

16.
Materials (Basel) ; 15(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955250

ABSTRACT

The present investigation was aimed at the utilization of alternate materials, emphasizing hazardous industrial products (red mud and cathode ray tubes), as constituents of radiation shielding concrete. The usage of these hazardous industrial products improves the sustainability and performance of the radiation shielding concrete. Five concrete blocks were cast and their density, compressive strength, gamma shielding factors, radiation absorption ratio, and transmission factor were explored. For this purpose, gamma-ray shielding measurements were done with the help of an HPGe detector. Mix-1, with zero contents of red mud and CRTs, had the lowest LAC. The LAC results demonstrated that the shielding performance of the current concretes would be better with the increase in red mud and cathode ray tube glass. The Transmission factor (TF) for the prepared concretes with a thickness of 2 cm varied between 11.9-26.1% at 0.06 MeV, while it varied between 4-13% for a thickness of 3 cm. The TF results showed that the composites with a thickness of 2, 3, or 5 cm are good shields against lower energy radiation. The radiation absorption ratio (RAR) for the prepared concretes is high at low energy, suggesting that these new composites can absorb most of the low-energy photons. The RAR results emphasize that the increase in CRTs in the new composites enhanced the radiation shielding features, and when the CRT glass is at a maximum, more attenuation was achieved.

17.
Polymers (Basel) ; 14(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35890643

ABSTRACT

In this work, we examined novel polymer composites for use in radiation protection applications. These prepared polymers are non-toxic compared with lead and show potential to be used as protective gear in different medical applications where low-energy photons are utilized. We prepared silicon rubber (SR) with different concentrations of micro- and nano-sized MgO. We used a HPGe detector to measure radiation attenuation factors at different photon energies, ranging from 59.6 to 1333 keV. We reported the effect of particle size on the attenuation parameters and found that the linear attenuation factors for SR with nano-MgO were higher than for SR with micro-MgO. The mean free path (MFP) for pure SR and SR with micro- and nano-sized MgO were determined, and we found that silicon rubber with MgO (both micro- and nano-sized) has a lower MFP than pure SR. The linear attenuation coefficient results show the importance of using SR with high MgO content for low-energy radiation protection applications. Moreover, the half-value layer (HVL) results demonstrate that we need a certain thickness of SR with nano-MgO to effectively reduce the intensity of the low-energy photons.

18.
Materials (Basel) ; 15(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897562

ABSTRACT

Uranium-238 (238U) and potassium-40 (40K) are important naturally occurring radionuclides. Gamma spectroscopy is a direct, non-destructive method used to determine radionuclide concentrations, but it suffers from the interference of gamma lines. 40K gamma spectroscopy is affected by background interference, which leads to a reduction in the minimum detectable activity. The energy dispersive X-ray analytical technique is quick, with fewer interference problems or background effects. However, it is an indirect method for calculating and deducing the concentrations of isotopes. The aim of the present study was to compare and evaluate both techniques so that they can be utilized efficiently. The results of 238U and 40K were measured by well-calibrated gamma spectroscopy and energy dispersive X-ray techniques. the results indicated that Halayeb White granite is the most environmentally safe compared to the other two types because it contains a very low concentration of uranium 238 and potassium 40.

19.
Materials (Basel) ; 15(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683205

ABSTRACT

Recently, polymers have entered into many medical and industrial applications. This work aimed to intensively study polypropylene samples (PP) embedded with micro and nanoparticles of PbO for their application in radiation shielding. Samples were prepared by adding 10%, 30%, and 50% by weight of PbO microparticles (mPbO) and adding 10% and 50% PbO nanoparticles (nPbO), in addition to the control sample (pure polypropylene). The morphology of the prepared samples was tested; on the other hand, the shielding efficiency of gamma rays was tested for different sources with different energies. The experimental linear attenuation coefficient (LAC) was determined using a NaI scintillation detector, the experimental results were compared with NIST-XCOM results, and a good agreement was noticed. The LAC was 0.8005 cm-1 for PP-10%nPbO and 0.6283 cm-1 for PP-10%mPbO while was 5.8793 cm-1 for PP-50%nPbO and 3.9268 cm-1 for PP-50%mPbO at 0.060 MeV. The LAC values have been converted to some specific values, such as half value layer (HVL), mean free path (MFP), tenth value layer (TVL), and radiation protection efficiency (RPE) which are useful for discussing the shielding capabilities for gamma-rays. The results of shielding parameters reveal that the PP embedded with nPbO gives better attenuation than its counterpart pp embedded with mPbO at all studied energies.

20.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683923

ABSTRACT

This work aimed to intensively study polypropylene samples (PP) embedded with micro- and nanoparticles of Bi2O3 for their application in radiation shielding. Samples were prepared by adding 10%, 20%, 30%, 40%, and 50% of Bi2O3 microparticles (mBi2O3) by weight, and adding 10% and 50% of Bi2O3 nanoparticles (nBi2O3), in addition to the control sample (pure polypropylene). The morphology of the prepared samples was tested, and also, the shielding efficiency of gamma rays was tested for different sources with different energies. The experimental LAC were determined using a NaI scintillation detector, the experimental results were compared with NIST-XCOM results, and a good agreement was noticed. The LAC values have been used to calculate some specific parameters, such as half value layer (HVL), mean free path (MFP), tenth value layer (TVL), and radiation protection efficiency (RPE), which are useful for discussing the shielding capabilities of gamma rays. The results of the shielding parameters show that the PP embedded with nBi2O3 gives better attenuation than its counterpart, PP embedded with mBi2O3, at all studied energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...