Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 273(Pt 2): 132986, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866286

ABSTRACT

As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.


Subject(s)
Antioxidants , Fungal Polysaccharides , Humans , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Biopolymers/chemistry , Animals , Fungi
2.
Environ Sci Ecotechnol ; 21: 100427, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38765892

ABSTRACT

Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.

3.
Biotechnol Adv ; 72: 108344, 2024.
Article in English | MEDLINE | ID: mdl-38521282

ABSTRACT

Biohydrogen (Bio-H2) is widely recognized as a sustainable and environmentally friendly energy source, devoid of any detrimental impact on the environment. Lignocellulosic biomass (LB) is a readily accessible and plentiful source material that can be effectively employed as a cost-effective and sustainable substrate for Bio-H2 production. Despite the numerous challenges, the ongoing progress in LB pretreatment technology, microbial fermentation, and the integration of molecular biology techniques have the potential to enhance Bio-H2 productivity and yield. Consequently, this technology exhibits efficiency and the capacity to meet the future energy demands associated with the valorization of recalcitrant biomass. To date, several pretreatment approaches have been investigated in order to improve the digestibility of feedstock. Nevertheless, there has been a lack of comprehensive systematic studies examining the effectiveness of pretreatment methods in enhancing Bio-H2 production through dark fermentation. Additionally, there is a dearth of economic feasibility evaluations pertaining to this area of research. Thus, this review has conducted comparative studies on the technological and economic viability of current pretreatment methods. It has also examined the potential of these pretreatments in terms of carbon neutrality and circular economy principles. This review paves the way for a new opportunity to enhance Bio-H2 production with technological approaches.


Subject(s)
Hydrogen , Lignin , Biomass , Hydrogen/chemistry , Lignin/chemistry , Fermentation , Biofuels
4.
Ecotoxicol Environ Saf ; 270: 115908, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38171102

ABSTRACT

The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.


Subject(s)
Microalgae , Biofuels , Bioreactors , Fermentation , Hydrogen , Fossil Fuels , Biomass
5.
Ecotoxicol Environ Saf ; 271: 115942, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218104

ABSTRACT

The global production and consumption of plastics, as well as their deposition in the environment, are experiencing exponential growth. In addition, mismanaged plastic waste (PW) losses into drainage channels are a growing source of microplastic (MP) pollution concern. However, the complete understanding of their environmental implications throughout their life cycle is yet to be fully understood. Determining the potential extent to which MPs contribute to overall ecotoxicity is possible through the monitoring of PW release and MP removal during remediation. Life cycle assessments (LCAs) have been extensively utilized in many comparative analyses, such as comparing petroleum-based plastics with biomass and single-use plastics with multi-use alternatives. These assessments typically yield unexpected or paradoxical results. Nevertheless, there is still a paucity of reliable data and tools for conducting LCAs on plastics. On the other hand, the release and impact of MP have so far not been considered in LCA studies. This is due to the absence of inventory-related data regarding MP releases and the characterization factors necessary to quantify the effects of MP. Therefore, this review paper conducts a comprehensive literature review in order to assess the current state of knowledge and data regarding the environmental impacts that occur throughout the life cycle of plastics, along with strategies for plastic management through LCA.


Subject(s)
Waste Management , Water Pollutants, Chemical , Animals , Plastics/toxicity , Evidence Gaps , Environmental Pollution , Microplastics , Life Cycle Stages , Environmental Monitoring , Ecosystem , Water Pollutants, Chemical/analysis
6.
Environ Monit Assess ; 195(11): 1361, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870605

ABSTRACT

The anticipated increase in the influx of plastic waste into aquatic environments has propelled the identification and elimination of plastic waste into the global agenda. The plastics sector generates a significant volume of materials, which, due to their extended durability, accumulate rapidly in natural ecosystems. Consequently, this indiscriminate utilization, along with the deposition of plastic waste (PW) in landfills and inadequate recycling practices, leads to diverse economic, social, and environmental consequences. Microplastics (MPs) are a type of PW that has been fragmented into particles measuring less than 5 mm. These particles have been found in several environments, including the air, soil, freshwater, and ocean ecosystems, where they accumulate in large quantities. In order to gain insight into the ecological risks and resource implications associated with a plastic product, it is strongly advised to conduct life cycle and sustainability analyses. Therefore, this paper examines various strategies aimed at achieving effective management of MP waste in order to develop a conceptual framework for MPs in circular economy and life cycle assessment (LCA). The findings of this study provides a new avenue for future research and contribution to manage MP waste as well as reduce their environmentally hazardous impact.


Subject(s)
Microplastics , Waste Management , Animals , Plastics , Ecosystem , Environmental Monitoring , Life Cycle Stages
7.
Environ Sci Ecotechnol ; 15: 100254, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37020495

ABSTRACT

The current transition to sustainability and the circular economy can be viewed as a socio-technical response to environmental impacts and the need to enhance the overall performance of the linear production and consumption paradigm. The concept of biowaste refineries as a feasible alternative to petroleum refineries has gained popularity. Biowaste has become an important raw material source for developing bioproducts and biofuels. Therefore, effective environmental biowaste management systems for the production of bioproducts and biofuels are crucial and can be employed as pillars of a circular economy. Bioplastics, typically plastics manufactured from bio-based polymers, stand to contribute to more sustainable commercial plastic life cycles as part of a circular economy in which virgin polymers are made from renewable or recycled raw materials. Various frameworks and strategies are utilized to model and illustrate additional patterns in fossil fuel and bioplastic feedstock prices for various governments' long-term policies. This review paper highlights the harmful impacts of fossil-based plastic on the environment and human health, as well as the mass need for eco-friendly alternatives such as biodegradable bioplastics. Utilizing new types of bioplastics derived from renewable resources (e.g., biowastes, agricultural wastes, or microalgae) and choosing the appropriate end-of-life option (e.g., anaerobic digestion) may be the right direction to ensure the sustainability of bioplastic production. Clear regulation and financial incentives are still required to scale from niche polymers to large-scale bioplastic market applications with a truly sustainable impact.

8.
J Hazard Mater ; 448: 130944, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36860037

ABSTRACT

Polyethylene (PE) is one of the most common synthetic polymers, and PE waste pollution has been an environmental and health concern for decades. Biodegradation is the most eco-friendly and effective approach for plastic waste management. Recently, an emphasis has been placed on novel symbiotic yeasts isolated from termite guts as promising microbiomes for multiple biotechnological applications. This study might be the first to explore the potential of a constructed tri-culture yeast consortium, designated as DYC, isolated from termites for the degradation of low-density polyethylene (LDPE). The yeast consortium DYC stands for the molecularly identified species Sterigmatomyces halophilus, Meyerozyma guilliermondii, and Meyerozyma caribbica. The LDPE-DYC consortium showed a high growth rate on UV-sterilized LDPE as a sole carbon source, resulting in a reduction in tensile strength (TS) of 63.4% and a net LDPE mass reduction of 33.2% compared to the individual yeasts. All yeasts, individually and in consortium, showed a high production rate for LDPE-degrading enzymes. The hypothetical LDPE biodegradation pathway that was proposed revealed the formation of several metabolites, including alkanes, aldehydes, ethanol, and fatty acids. This study emphasizes a novel concept for using LDPE-degrading yeasts from wood-feeding termites for plastic waste biodegradation.


Subject(s)
Isoptera , Polyethylene , Animals , Plastics , Wood , Biodegradation, Environmental
9.
J Hazard Mater ; 443(Pt B): 130287, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36335905

ABSTRACT

Polyethylene (PE) has been regarded as non-biodegradable for decades, and the evidence for its degradation by bacteria remains unclear in the literature. Waxworms have recently gained attention for their ability to degrade natural long-chain polymers and synthetic plastic. This study aims to explore the potential of low-density polyethylene (LDPE)-degrading bacteria from the gut symbionts of lesser waxworm (Achroia grisella) larvae for the effective biodegradation of LEDP. Two bacterial isolates (LDPE-DB1 and LDPE-DB2) exhibited the greatest reduction in tensile strength among all isolates (P < 0.0001), reaching 51.3% and 58.3%, respectively. The bacterial strains LDPE-DB1 and LDPE-DB2 stand for molecularly identified species, Citrobacter freundii and Bacillus sp., respectively. After 5 days of incubation, the cell density of LDPE-DB1 and LDPE-DB2 reached 2.20 × 108 and 1.8 × 108 CFU/mL, respectively. However, after 30 days of incubation, the cell density reached 7.3 × 108 and 5.9 × 108, respectively. The formed cavities indicate the high activity of the isolated bacteria from Achroia grisella larvae where the cavities reach a depth of up to 1.2 µm. The findings of this study demonstrated the presence of LDPE-degrading bacteria in Achroia grisella and provide promising evidence for the biodegradation of plastic waste management in the environment.


Subject(s)
Moths , Polyethylene , Animals , Polyethylene/metabolism , Plastics/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Larva/metabolism
10.
Environ Sci Ecotechnol ; 13: 100205, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36247722

ABSTRACT

The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.

11.
Appl Biochem Biotechnol ; 195(3): 2093-2113, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36370247

ABSTRACT

The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). On the eve of the COVID-19 pandemic, there is a tremendous increase in the production of plastic-based PPE. To control the spread of the virus, face masks (FMs) are used as primary PPE. Thus, the production and usage of FM significantly increased as the COVID-19 pandemic was still escalating. The primary raw materials for the manufacturing of FMs are non-biodegradable synthetic polymers derived from petrochemicals. This calls for an urgent need to develop novel strategies for the efficient degradation of plastics. Furthermore, most of these masks contain plastic or other derivatives of plastic. The extensive usage of FM generates millions of tons of plastic waste for the environment in a short span of time. However, their degradation in the environment and consequences are poorly understood. Therefore, the potential impacts of disposable FM on the environment and human health during the COVID-19 pandemic are clarified in the present study. Despite structural and recalcitrance variations, lignocellulose and plastic polymers have physicochemical features, including carbon skeletons with comparable chemical bonds as well as hydrophobic properties in amorphous and crystalline regions. In this review, we argue that there is much to be learned from termites by transferring knowledge from research on lignocellulose degradation by termites to that on plastic waste.


Subject(s)
COVID-19 , Isoptera , Humans , Animals , Masks , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Wood , Plastics
12.
Microbiol Res ; 265: 127187, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36202005

ABSTRACT

The growing world population, rapid industrialization, and intensive agriculture have increased environmental impacts such as wastewater discharge and global warming. These threats coupled the deficiency of fossil fuel and the rise in crude oil prices globally cause serious social, environmental and economic problems. Microalgae strains can withstand the harsh environments of modern industrial and municipal wastes. The shift toward a circular bio-economy that relies on resource diversification has also prompted the reorganization of traditional wastewater treatment (WWT) processes into a low-carbon, integrated biorefinery model that can accommodate multiple waste streams. Therefore, microalgae-based WWT is now a serious competitor to conventional WWT since the major bottlenecks of nutrient assimilation and high microalgae population have been partially mitigated. This review paper aims to collate advances and new knowledge emerged in recent years for microalgae-based WWT and related biofuel technologies.


Subject(s)
Microalgae , Petroleum , Water Purification , Biofuels , Biomass , Carbon , Fossil Fuels , Wastewater
13.
Bioresour Technol ; 363: 127869, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36064080

ABSTRACT

Due to global urbanization, industrialization, and economic development, biowastes generation represents negative consequences on the environment and human health. The use of generated biowastes as a feedstock for biodegradable bioplastic production has opened a new avenue for environmental sustainability from the circular (bio)economy standpoint. Biodegradable bioplastic production can contribute to the sustainability pillars (environmental, economic, and social). Furthermore, bioenergy, biomass, and biopolymers production after recycling of biodegradable bioplastic can help to maintain the energy-environment balance. Several types of biodegradable bioplastic, such as starch-based, polyhydroxyalkanoates, polylactic acid, and polybutylene adipate terephthalate, can achieve this aim. In this review, an overview of the main biowastes valorization routes and the main biodegradable bioplastic types of production, application, and biodegradability are discussed to achieve the transition to the circular economy. Additionally, end-of-life scenarios (up-cycle and down-cycle) are reviewed to attain the maximum environmental, social, and economic benefit from biodegradable bioplastic products under biorefinery concept.


Subject(s)
Polyhydroxyalkanoates , Adipates , Biomass , Humans , Recycling , Starch
14.
Ecotoxicol Environ Saf ; 231: 113160, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026583

ABSTRACT

The synthetic dyes used in the textile industry pollute a large amount of water. Textile dyes do not bind tightly to the fabric and are discharged as effluent into the aquatic environment. As a result, the continuous discharge of wastewater from a large number of textile industries without prior treatment has significant negative consequences on the environment and human health. Textile dyes contaminate aquatic habitats and have the potential to be toxic to aquatic organisms, which may enter the food chain. This review will discuss the effects of textile dyes on water bodies, aquatic flora, and human health. Textile dyes degrade the esthetic quality of bodies of water by increasing biochemical and chemical oxygen demand, impairing photosynthesis, inhibiting plant growth, entering the food chain, providing recalcitrance and bioaccumulation, and potentially promoting toxicity, mutagenicity, and carcinogenicity. Therefore, dye-containing wastewater should be effectively treated using eco-friendly technologies to avoid negative effects on the environment, human health, and natural water resources. This review compares the most recent technologies which are commonly used to remove dye from textile wastewater, with a focus on the advantages and drawbacks of these various approaches. This review is expected to spark great interest among the research community who wish to combat the widespread risk of toxic organic pollutants generated by the textile industries.


Subject(s)
Wastewater , Water Pollutants, Chemical , Coloring Agents , Humans , Textile Industry , Textiles , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
J Hazard Mater ; 418: 126091, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34118544

ABSTRACT

Lignocellulosic biomass represents an unlimited and ubiquitous energy source, which can effectively address current global challenges, including climate change, greenhouse gas emissions, and increased energy demand. However, lignocellulose recalcitrance hinders microbial degradation, especially in case of contaminated materials such as creosote (CRO)-treated wood, which necessitates appropriate processing in order to eliminate pollution. This study might be the first to explore a novel bacterial consortium SST-4, for decomposing birchwood sawdust, capable of concurrently degrading lignocellulose and CRO compounds. Afterwards, SST-4 which stands for molecularly identified bacterial strains Acinetobacter calcoaceticus BSW-11, Shewanella putrefaciens BSW-18, Bacillus cereus BSW-23, and Novosphingobium taihuense BSW-25 was evaluated in terms of biological sawdust pre-treatment, resulting in effective lignocellulose degradation and 100% removal of phenol and naphthalene. Subsequently, the maximum biogas production observed was 18.7 L/kg VS, while cumulative methane production was 162.8 L/kg VS, compared to 88.5 without microbial pre-treatment. The cumulative energy production from AD-I and AD-II through biomethanation was calculated as 3177.1 and 5843.6 KJ/kg, respectively. The pretreatment process exhibited a significant increase in the energy yield by 83.9%. Lastly, effective CRO detoxification was achieved with EC50 values exceeding 90%, showing the potential for an integrated process of effective contaminated wood management and bioenergy production.


Subject(s)
Microbial Consortia , Sphingomonadaceae , Anaerobiosis , Biofuels/analysis , Biomass , Creosote , Lignin/metabolism , Methane , Sphingomonadaceae/metabolism , Wood/chemistry
16.
Sci Total Environ ; 792: 148359, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34147795

ABSTRACT

The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.


Subject(s)
Nanostructures , Pesticides , Agriculture , Food Industry , Humans , Nanotechnology
17.
Sci Total Environ ; 780: 146590, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030345

ABSTRACT

The growing accumulation of plastic wastes is one of the main environmental challenges currently faced by modern societies. These wastes are considered a serious global problem because of their effects on all forms of life. There is thus an urgent need to demonstrate effective eco-environmental techniques to overcome the hazardous environmental impacts of traditional disposal paths. However, our current knowledge on the prevailing mechanisms and the efficacy of synthetic plastics' biodegradation still appears limited. Under this scope, our review aims to comprehensively highlight the role of microbes, with special emphasis on algae, on the entire plastic biodegradation process focusing on the depolarization of various synthetic plastic types. Moreover, our review emphasizes on the ability of insects' gut microbial consortium to degrade synthetic plastic wastes. In this view, we discuss the schematic pathway of the biodegradation process of six types of synthetic plastics. These findings may contribute to establishing bio-upcycling processes of plastic wastes towards biosynthesis of valuable metabolic products. Finally, we discuss the challenges and opportunities for microbial valorization of degraded plastic wastes.


Subject(s)
Microbial Consortia , Plastics , Biodegradation, Environmental
18.
Biotechnol Biofuels ; 14(1): 61, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33685508

ABSTRACT

BACKGROUND: Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production. RESULTS: Thirty-eight yeast strains were isolated, molecularly identified and subsequently tested for desired enzymatic activity, lipid accumulation, and tolerance to lignin-derived metabolites. The most promising species were then used for construction of a novel yeast consortium, which was further evaluated for azo dyes degradation, under various culture conditions, dye levels, as well as upon the addition of heavy metals, different carbon and nitrogen sources, and lastly agro-waste as an inexpensive and environmentally friendly substrate alternative. The novel yeast consortium, NYC-1, which was constructed included the manganese-dependent peroxidase producing oleaginous strains Meyerozyma caribbica, Meyerozyma guilliermondii, Debaryomyces hansenii, and Vanrija humicola, and showed efficient azo dyes decolorization, which was further enhanced depending on the incubation conditions. Furthermore, enzymatic activity, fatty acid profile and biodiesel properties were thoroughly investigated. Lastly, a dye degradation pathway coupled to biodiesel production was proposed, including the formation of phenol-based products, instead of toxic aromatic amines. CONCLUSION: In total, this study might be the first to explore the application of MnP and lipid-accumulating yeasts for coupling dye degradation and biodiesel production.

19.
Sci Total Environ ; 771: 144719, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33548729

ABSTRACT

Accumulation of plastic wastes has been recently recognized as one of the most critical environmental challenges, affecting all life forms, natural ecosystems and economy, worldwide. Under this threat, finding alternative environmentally-friendly solutions, such as biodegradation instead of traditional disposal, is of utmost importance. However, up to date, there is limited knowledge on plastic biodegradation mechanisms and efficiency. From this point of view, the purpose of this review is to highlight the negative effects of the accumulation of the most conventional plastic waste (polyethylene, polypropylene, polystyrene, polyvinylchloride, polyethylene terephthalate and polyurethane) on the environment and to present their degradability potential through abiotic and biotic processes. Furthermore, the ability of different microbial species for degradation of these polymers is thoroughly discussed. The present review also addresses the contribution of invertebrates, such as insects, in plastic degradation process, highlighting the vital role that they could play in the future. In total, a schematic pathway of an innovative approach to improve the disposal of plastic wastes is proposed, with view to establishing an effective and sustainable practice for plastic waste management.


Subject(s)
Ecosystem , Plastics , Biodegradation, Environmental , Polymers , Polyurethanes
20.
Methods Enzymol ; 630: 481-502, 2020.
Article in English | MEDLINE | ID: mdl-31931999

ABSTRACT

Enzymes as specific natural biocatalysts are present in all living organisms and they play a key role in the biochemical reactions inside, as outside the cell. Despite the wide range of environmental, medical, agricultural, and food applications, the high cost, non-reusability, and limited stability of soluble (non-immobilized) enzymes are considered barriers to their commercial application. Immobilization techniques are an effective strategy for solving problems associated with free enzymes in terms of improving the efficiency and stability of catalytic enzymes, as well as enhancing their separation and reusability in continuous industrial applications. Out of different supporting materials, magnetic nanoparticles are considered as the future trend for enzyme immobilization due to their exceptional properties regarding stabilization, easy recovery and reuse. Some recent techniques of enzyme immobilization on magnetic nanoparticles will be detailed hereafter in the chapter.


Subject(s)
Coloring Agents/isolation & purification , Enzymes, Immobilized/chemistry , Magnetite Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Bacteria/enzymology , Biocatalysis , Biodegradation, Environmental , Enzyme Stability , Fungi/enzymology , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Peroxidase/chemistry , Wastewater/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...