Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inhal Toxicol ; 35(7-8): 214-229, 2023.
Article in English | MEDLINE | ID: mdl-37339372

ABSTRACT

BACKGROUND: Exposure to asbestos is associated with malignant and nonmalignant respiratory disease. To strengthen the scientific basis for risk assessment on fibers, the National Institute of Environmental Health Sciences (NIEHS) has initiated a series of studies to address fundamental questions on the toxicology of naturally occurring asbestos and related mineral fibers after inhalation exposure. A prototype nose-only exposure system was previously developed and validated. The prototype system was expanded to a large-scale exposure system in this study for conducting subsequent in vivo rodent inhalation studies of Libby amphibole (LA) 2007, selected as a model fiber. RESULTS: The exposure system consisting of six exposure carousels was able to independently deliver stable LA 2007 aerosol to individual carousels at target concentrations of 0 (control group), 0.1, 0.3, 1, 3, or 10 mg/m3. A single aerosol generator was used to provide aerosol to all carousels to ensure that exposure atmospheres were chemically and physically similar, with aerosol concentration as the only major variable among the carousels. Transmission electron microscopy (TEM) coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis of aerosol samples collected at the exposure ports indicated the fiber dimensions, chemical composition, and mineralogy were equivalent across exposure carousels and were comparable to the bulk LA 2007 material. CONCLUSION: The exposure system developed is ready for use in conducting nose-only inhalation toxicity studies of LA 2007 in rats. The exposure system is anticipated to have applicability for the inhalation toxicity evaluation of other natural mineral fibers of concern.


Subject(s)
Asbestos, Amphibole , Asbestos , Rats , Animals , Asbestos, Amphibole/toxicity , Mineral Fibers , Aerosols , Inhalation Exposure/adverse effects
2.
Inhal Toxicol ; 35(7-8): 201-213, 2023.
Article in English | MEDLINE | ID: mdl-37339371

ABSTRACT

BACKGROUND: Asbestos has been classified as a human carcinogen, and exposure may increase the risk of diseases associated with impaired respiratory function. As the range of health effects and airborne concentrations that result in health effects across asbestos-related natural mineral fiber types are not fully understood, the National Institute of Environmental Health Sciences has established a series of research studies to characterize hazards of natural mineral fibers after inhalation exposure. This paper presents the method development work of this research project. RESULTS: A prototype nose-only exposure system was fabricated to explore the feasibility of generating natural mineral fiber aerosol for in vivo inhalation toxicity studies. The prototype system consisted of a slide bar aerosol generator, a distribution/delivery system and an exposure carousel. Characterization tests conducted using Libby Amphibole 2007 (LA 2007) demonstrated the prototype system delivered stable and controllable aerosol concentration to the exposure carousel. Transmission electron microscopy (TEM) analysis of aerosol samples collected at the exposure port showed the average fiber length and width were comparable to the bulk LA 2007. TEM coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis further confirmed fibers from the aerosol samples were consistent with the bulk LA 2007 chemically and physically. CONCLUSIONS: Characterization of the prototype system demonstrated feasibility of generating LA 2007 fiber aerosols appropriate for in vivo inhalation toxicity studies. The methods developed in this study are suitable to apply to a multiple-carousel exposure system for a rat inhalation toxicity testing using LA 2007.


Subject(s)
Asbestos, Amphibole , Asbestos , Humans , Rats , Animals , Asbestos, Amphibole/toxicity , Mineral Fibers , Asbestos/analysis , Carcinogens/toxicity , Aerosols
3.
Front Immunol ; 12: 621754, 2021.
Article in English | MEDLINE | ID: mdl-33717122

ABSTRACT

Staphylococcus aureus is a leading cause of significant morbidity and mortality and an enormous economic burden to public health worldwide. Infections caused by methicillin-resistant S. aureus (MRSA) pose a major threat as MRSA strains are becoming increasingly prevalent and multi-drug resistant. To this date, vaccines targeting surface-bound antigens demonstrated promising results in preclinical testing but have failed in clinical trials. S. aureus pathogenesis is in large part driven by immune destructive and immune modulating toxins and thus represent promising vaccine targets. Hence, the objective of this study was to evaluate the safety and immunogenicity of a staphylococcal 4-component vaccine targeting secreted bi-component pore-forming toxins (BCPFTs) and superantigens (SAgs) in non-human primates (NHPs). The 4-component vaccine proved to be safe, even when repeated vaccinations were given at a dose that is 5 to 10- fold higher than the proposed human dose. Vaccinated rhesus macaques did not exhibit clinical signs, weight loss, or changes in hematology or serum chemistry parameters related to the administration of the vaccine. No acute, vaccine-related elevation of serum cytokine levels was observed after vaccine administration, confirming the toxoid components lacked superantigenicity. Immunized animals demonstrated high level of toxin-specific total and neutralizing antibodies toward target antigens of the 4-component vaccine as well as cross-neutralizing activity toward staphylococcal BCPFTs and SAgs that are not direct targets of the vaccine. Cross-neutralization was also observed toward the heterologous streptococcal pyogenic exotoxin B. Ex vivo stimulation of PBMCs with individual vaccine components demonstrated an overall increase in several T cell cytokines measured in supernatants. Immunophenotyping of CD4 T cells ex vivo showed an increase in Ag-specific polyfunctional CD4 T cells in response to antigen stimulation. Taken together, we demonstrate that the 4-component vaccine is well-tolerated and immunogenic in NHPs generating both humoral and cellular immune responses. Targeting secreted toxin antigens could be the next-generation vaccine approach for staphylococcal vaccines if also proven to provide efficacy in humans.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/immunology , Staphylococcal Toxoid/immunology , Staphylococcal Vaccines/immunology , Animals , Antibodies, Bacterial/blood , Antibody Formation , Broadly Neutralizing Antibodies/blood , Immunity, Heterologous , Immunogenicity, Vaccine , Lymphocyte Activation , Macaca mulatta , Superantigens/immunology , Vaccination
4.
Toxicol Appl Pharmacol ; 281(3): 303-9, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25448049

ABSTRACT

NSC-743380 (1-[(3-chlorophenyl)-methyl]-1H-indole-3-carbinol) is in early stages of development as an anticancer agent. Two metabolites reflect sequential conversion of the carbinol functionality to a carboxaldehyde and the major metabolite, 1-[(3-chlorophenyl)-methyl]-1H-indole-3-carboxylic acid. In an exploratory toxicity study in rats, NSC-743380 induced elevations in liver-associated serum enzymes and biliary hyperplasia. Biliary hyperplasia was observed 2 days after dosing orally for 2 consecutive days at 100mg/kg/day. Notably, hepatotoxicity and biliary hyperplasia were observed after oral administration of the parent compound, but not when major metabolites were administered. The toxicities of a structurally similar but pharmacologically inactive molecule and a structurally diverse molecule with a similar efficacy profile in killing cancer cells in vitro were compared to NSC-743380 to explore scaffold versus target-mediated toxicity. Following two oral doses of 100mg/kg/day given once daily on two consecutive days, the structurally unrelated active compound produced hepatic toxicity similar to NSC-743380. The structurally similar inactive compound did not, but, lower exposures were achieved. The weight of evidence implies that the hepatotoxicity associated with NSC-743380 is related to the anticancer activity of the parent molecule. Furthermore, because biliary hyperplasia represents an unmanageable and non-monitorable adverse effect in clinical settings, this model may provide an opportunity for investigators to use a short-duration study design to explore biomarkers of biliary hyperplasia.


Subject(s)
Acute Disease , Biliary Tract Diseases/chemically induced , Biliary Tract/drug effects , Indoles/adverse effects , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Biliary Tract/metabolism , Biliary Tract/pathology , Biliary Tract Diseases/blood , Biliary Tract Diseases/metabolism , Biliary Tract Diseases/pathology , Biomarkers/blood , Biotransformation , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drugs, Investigational/administration & dosage , Drugs, Investigational/adverse effects , Drugs, Investigational/metabolism , Drugs, Investigational/pharmacokinetics , Hyperplasia , Indoles/administration & dosage , Indoles/blood , Indoles/metabolism , Indoles/pharmacokinetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/physiopathology , Male , Random Allocation , Rats, Inbred F344 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...