Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; 40(24): 13901-13911, 2022.
Article in English | MEDLINE | ID: mdl-34720051

ABSTRACT

Coronaviruses have posed a persistent threat to human health over the last two decades. Despite the accumulated knowledge about coronavirus-related pathogens, development of an effective treatment for its new variant COVID-19 is highly challenging. For the highly-conserved and main coronavirus protease 3CLpro, dimerization is known to be essential for its catalytic activity and thereby for virus proliferation. Here, we assess the potential of short peptide segments to disrupt dimerization of the 3CLpro protease as a route to block COVID-19 proliferation. Based on the X-ray structure of the 3CLpro dimer, we identified the SPSGVY126QCAMRP dodecapeptide segment as overlapping the hotspot regions on the 3CLpro dimer interface. Using computational blind docking of the peptide to the 3CLpro monomer, we found that the SPSGVY126QCAMRP peptide has favourable thermodynamic binding (ΔG= -5.93 kcal/mol) to the hotspot regions at the 3CLpro dimer interface. Importantly, the peptide was also found to preferentially bind to the hotspot regions compared to other potential binding sites lying away from the dimer interface (ΔΔG=-1.31 kcal/mol). Docking of peptides corresponding to systematic mutation of the V125 and Y126 residues led to the identification of seven peptides, SPSGHAQCAMRP, SPSGVTQCAMRP, SPSGKPQCAMRP, SPSGATQCAMRP, SPSGWLQCAMRP, SPSGAPQCAMRP and SPSGHPQCAMRP, that outperform the wild-type SPSGVY126QCAMRP peptide in terms of preferential binding to the 3CLpro dimer interface. These peptides have the potential to disrupt 3CLpro dimerization and therefore could provide lead structures for the development of broad spectrum COVID-19 inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , Peptide Hydrolases/metabolism , Cysteine Endopeptidases/chemistry , Peptides/pharmacology , Binding Sites , Protease Inhibitors/pharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology
2.
Cancer Inform ; 17: 1176935118755354, 2018.
Article in English | MEDLINE | ID: mdl-29449773

ABSTRACT

Understanding gene-gene interaction and its causal relationship to protein-protein interaction is a viable route for understanding drug action at the genetic level, which is largely hindered by inability to robustly map gene regulatory networks. Here, we use biological prior knowledge of family-to-family gene interactions available in the KEGG database to reveal individual gene-to-gene interaction networks that underlie the gene expression profiles of 2 cell line data sets, sensitive and resistive to neoadjuvant docetaxel breast anticancer drug. Comparison of the topology of the 2 networks revealed that the resistant network is highly connected with 2 large domains of connectivity: one in which the RAF1 and MAP2K2 genes form hubs of connectivity and another in which the RAS gene is highly connected. On the contrary, the sensitive network is highly disrupted with a lower degree of connectivity. We investigated the interactions of the neoadjuvant docetaxel drug with the protein chains encoded by gene-gene interactions that underlie the disruption of the sensitive network topology using protein-protein and drug-protein docking techniques. We found that the sensitive network is likely to be disrupted by interaction of the neoadjuvant docetaxel drug with the DAXX and FGR1 proteins, which is consistent with the observed accumulation of cytoplasmic DAXX and overexpression of FGR1 precursors in cancer cell lines. This indicates that the DAXX and FGR1 proteins could be potential targets for the neoadjuvant docetaxel drug. The work, therefore, provides a new route for understanding the effect of the drug mode of action from the viewpoint of the change in the topology of gene-gene regulatory networks and provides a new avenue for bridging the gap between gene-gene interactions and protein-protein interactions which could have deep implications on mainstream drug development protocols.

3.
J Mol Model ; 23(2): 47, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28154984

ABSTRACT

A large number of single-stranded RNA viruses assemble their capsid and their genomic material simultaneously. The RNA viral genome plays multiple roles in this process that are currently only partly understood. In this work, we investigated the thermodynamic basis of the role of viral RNA on the assembly of capsid proteins. The viral capsid of bacteriophage MS2 was considered as a case study. The MS2 virus capsid is composed of 60 AB and 30 CC protein dimers. We investigated the effect of RNA stem loop (the translational repressor TR) binding to the capsid dimers on the dimer-dimer relative association free energies. We found that TR binding results in destabilization of AB self-association compared with AB and CC association. This indicates that the association of the AB and CC dimers is the most likely assembly pathway for the MS2 virus, which explains the experimental observation of alternating patterns of AB and CC dimers in dominant assembly intermediates of the MS2 virus. The presence of viral RNA, therefore, dramatically channels virus assembly to a limited number of pathways, thereby enhancing the efficiency of virus self-assembly process. Interestingly, Thr59Ser and Thr45Ala mutations of the dimers, in the absence of RNA stem loops, lead to stabilization of AB self-association compared with the AB and CC associations, thereby channelling virus assembly towards a fivefold (AB)5 pentamer intermediate, providing a testable hypothesis of our thermodynamic arguments.


Subject(s)
Capsid Proteins/biosynthesis , Capsid/ultrastructure , Levivirus/genetics , RNA, Viral/genetics , Thermodynamics , Capsid/metabolism , Capsid Proteins/genetics , Crystallography, X-Ray , Escherichia coli/virology , Genome, Viral/genetics , Models, Molecular , Mutation/genetics , Protein Multimerization , Virus Assembly/physiology
4.
Proteins ; 84(10): 1443-61, 2016 10.
Article in English | MEDLINE | ID: mdl-27317883

ABSTRACT

Most p53 mutations associated with cancer are located in its DNA binding domain (DBD). Many structures (X-ray and NMR) of this domain are available in the protein data bank (PDB) and a vast conformational heterogeneity characterizes the various free and complexed states. The major difference between the apo and the holo-complexed states appears to lie in the L1 loop. In particular, the conformations of this loop appear to depend intimately on the sequence of DNA to which it binds. This conclusion builds upon recent observations that implicate the tetramerization and the C-terminal domains (respectively TD and Cter) in DNA binding specificity. Detailed PCA analysis of the most recent collection of DBD structures from the PDB have been carried out. In contrast to recommendations that small molecules/drugs stabilize the flexible L1 loop to rescue mutant p53, our study highlights a need to retain the flexibility of the p53 DNA binding surface (DBS). It is the adaptability of this region that enables p53 to engage in the diverse interactions responsible for its functionality. Proteins 2016; 84:1443-1461. © 2016 Wiley Periodicals, Inc.


Subject(s)
Apoproteins/chemistry , DNA/chemistry , Tumor Suppressor Protein p53/chemistry , Amino Acid Sequence , Apoproteins/genetics , Apoproteins/metabolism , Binding Sites , Conserved Sequence , DNA/genetics , DNA/metabolism , Gene Expression , Humans , Models, Molecular , Pliability , Principal Component Analysis , Protein Binding , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Sequence Alignment , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
J Phys Chem B ; 120(2): 320-8, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26701330

ABSTRACT

Peptides that inhibit MDM2 and attenuate MDM2-p53 interactions, thus activating p53, are currently being pursued as anticancer drug leads for tumors harboring wild type p53. The thermodynamic determinants of peptide-MDM2 interactions have been extensively studied. However, a detailed understanding of the dynamics that underlie these interactions is largely missing. In this study, we explore the kinetics of the binding of a set of peptides using Brownian dynamics simulations. We systematically investigate the effect of peptide C-terminal substitutions (Ser, Ala, Asn, Pro) of a Q16ETFSDLWKLLP27 p53-based peptide and a M1PRFMDYWEGLN12 12/1 phage-derived peptide on their interaction dynamics with MDM2. The substitutions modulate peptide residence times around the MDM2 protein. In particular, the highest affinity peptide, Q16ETFSDLWKLLS27, has the longest residence time (t ∼ 25 µs) around MDM2, suggesting its potentially important contribution to binding affinity. The binding of the p53-based peptides appears to be kinetically driven while that of the phage-derived series appears to be thermodynamically driven. The phage-derived peptides were found to adopt distinctly different modes of interaction with the MDM2 protein compared to their p53-based counterparts. The p53-based peptides approach the N-terminal region of the MDM2 protein with the peptide C-terminal end oriented toward the protein, while the M1PRFMDYWEGLN12-based peptides adopt the reverse orientation. To probe the determinants of this switch in orientation, a designed mutant of the phage-derived peptide, R3E (M1PEFMDYWEGLN12), was simulated and found to adopt the orientation adopted by the p53-based peptides and also to result in almost a 5-fold increase in the peptide residence time (∼120 µs) relative to the p53-based peptides. On this basis, we suggest that the R3E mutant phage-derived peptide has a higher affinity for MDM2 than the p53-based peptides and would therefore, competitively inhibit MDM2-p53. The study, therefore, provides a novel computational framework for kinetics-based lead optimization for anticancer drug development strategies.


Subject(s)
Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Amino Acid Sequence , Models, Molecular , Protein Binding , Proto-Oncogene Proteins c-mdm2/chemistry , Tumor Suppressor Protein p53/chemistry
6.
Cell Cycle ; 14(2): 179-88, 2015.
Article in English | MEDLINE | ID: mdl-25584963

ABSTRACT

The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.


Subject(s)
Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Kinetics , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-mdm2/chemistry , Static Electricity , Tumor Suppressor Protein p53/chemistry
7.
Cell Cycle ; 12(24): 3727-35, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24270847

ABSTRACT

The stereoselective affinity of small-molecule binding to proteins is typically broadly explained in terms of the thermodynamics of the final bound complex. Using Brownian dynamics simulations, we show that the preferential binding of the MDM2 protein to the geometrical isomers of Nutlin-3, an effective anticancer lead that works by inhibiting the interaction between the proteins p53 and MDM2, can be explained by kinetic arguments related to the formation of the MDM2:Nutlin-3 encounter complex. This is a diffusively bound state that forms prior to the final bound complex. We find that the MDM2 protein stereoselectivity for the Nutlin-3a enantiomer stems largely from the destabilization of the encounter complex of its mirror image enantiomer Nutlin-3b, by the K70 residue that is located away from the binding site. On the other hand, the trans-Nutlin-3a diastereoisomer exhibits a shorter residence time in the vicinity of MDM2 compared with Nutlin-3a due to destabilization of its encounter complex by the collective interaction of pairs of charged residues on either side of the binding site: Glu25 and Lys51 on one side, and Lys94 and Arg97 on the other side. This destabilization is largely due to the electrostatic potential of the trans-Nutlin-3a isomer being largely positive over extended continuous regions around its structure, which are otherwise well-identified into positive and negative regions in the case of the Nutlin-3a isomer. Such rich insight into the binding processes underlying biological selectivity complements the static view derived from the traditional thermodynamic analysis of the final bound complex. This approach, based on an explicit consideration of the dynamics of molecular association, suggests new avenues for kinetics-based anticancer drug development and discovery.


Subject(s)
Antineoplastic Agents/chemistry , Imidazoles/chemistry , Piperazines/chemistry , Proto-Oncogene Proteins c-mdm2/chemistry , Binding Sites , Molecular Dynamics Simulation , Mutation , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , Stereoisomerism
8.
Cell Cycle ; 12(3): 394-404, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23324352

ABSTRACT

The interaction of p53 with its regulators MDM2 and MDMX plays a major role in regulating the cell cycle. Inhibition of this interaction has become an important therapeutic strategy in oncology. Although MDM2 and MDMX share a very high degree of sequence/structural similarity, the small-molecule inhibitor nutlin appears to be an efficient inhibitor only of the p53-MDM2 interaction. Here, we investigate the mechanism of interaction of nutlin with these two proteins and contrast it with that of p53 using Brownian dynamics simulations. In contrast to earlier attempts to examine the bound states of the partners, here we locate initial reaction events in these interactions by identifying the regions of space around MDM2/MDMX, where p53/nutlin experience associative encounters with prolonged residence times relative to that in bulk solution. We find that the initial interaction of p53 with MDM2 is long-lived relative to nutlin, but, unlike nutlin, it takes place at the N- and C termini of the MDM2 protein, away from the binding site, suggestive of an allosteric mechanism of action. In contrast, nutlin initially interacts with MDM2 directly at the clefts of the binding site. The interaction of nutlin with MDMX, however, is very short-lived compared with MDM2 and does not show such direct initial interactions with the binding site. Comparison of the topology of the electrostatic potentials of MDM2 and MDMX and the locations of the initial encounters with p53/nutlin in tandem with structure-based sequence alignment revealed that the origin of the diminished activity of nutlin toward MDMX relative to MDM2 may stem partly from the differing topologies of the electrostatic potentials of the two proteins. Glu25 and Lys51 residues underpin these topological differences and appear to collectively play a key role in channelling nutlin directly toward the binding site on the MDM2 surface and are absent in MDMX. The results, therefore, provide new insight into the mechanism of p53/nutlin interactions with MDM2 and MDMX and could potentially have a broader impact on anticancer drug optimization strategies.


Subject(s)
Imidazoles/metabolism , Neoplasms/metabolism , Nuclear Proteins/metabolism , Piperazines/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Amino Acid Sequence , Binding Sites , Cell Cycle , Cell Cycle Proteins , Humans , Molecular Dynamics Simulation , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , Sequence Alignment , Static Electricity
9.
J Chem Inf Model ; 52(3): 770-6, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22390317

ABSTRACT

We investigated the potential of small peptide segments to function as broad-spectrum antiviral drug leads. We extracted the α-helical peptide segments that share common secondary-structure environments in the capsid protein-protein interfaces of three unrelated virus classes (PRD1-like, HK97-like, and BTV-like) that encompass different levels of pathogenicity to humans, animals, and plants. The potential for the binding of these peptides to the individual capsid proteins was then investigated using blind docking simulations. Most of the extracted α-helical peptides were found to interact favorably with one or more of the protein-protein interfaces within the capsid in all three classes of virus. Moreover, binding of these peptides to the interface regions was found to block one or more of the putative "hot spot" regions on the protein interface, thereby providing the potential to disrupt virus capsid assembly via competitive interaction with other capsid proteins. In particular, binding of the GDFNALSN peptide was found to block interface "hot spot" regions in most of the viruses, providing a potential lead for broad-spectrum antiviral drug therapy.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Virus Assembly/drug effects , Viruses/drug effects , Amino Acid Sequence , Antiviral Agents/chemistry , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Models, Molecular , Oligopeptides/chemistry , Peptide Fragments/chemistry , Protein Conformation , Species Specificity
10.
J Chem Theory Comput ; 8(1): 314-21, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-26592892

ABSTRACT

The study of drug-receptor interactions has largely been framed in terms of the equilibrium thermodynamic binding affinity, an in vitro measure of the stability of the drug-receptor complex that is commonly used as a proxy measure of in vivo biological activity. In response to the growing realization of the importance of binding kinetics to in vivo drug activity we present a computational methodology for the kinetic characterization of drug-receptor interactions in terms of the encounter complex. Using trajectory data from multiple Brownian dynamics simulations of ligand diffusion, we derive the spatial density of the ligand around the receptor and show how it can be quantitatively partitioned into different basins of attraction. Numerical integration of the ligand densities within the basins can be used to estimate the residence time of the ligand within these diffusive binding sites. Simulations of two structurally similar inhibitors of Hsp90 exhibit diffusive binding sites with similar spatial structure but with different ligand residence times. In contrast, a pair of structurally dissimilar inhibitors of MDM2, a peptide and a small molecule, exhibit spatially distinct basins of attraction around the receptor, which in turn reveal differences in ligand orientational order. Thus, our kinetic approach provides microscopic details of drug-receptor dynamics that provide novel insight into the observed differences in the thermodynamic binding affinities for the two inhibitors, such as the differences in the entropic contributions to binding. The characterization of the encounter complex, in terms of the structure, topology, and dynamics of diffusive binding sites, offers a new perspective on ligand-receptor interactions and the potential for greater insight into drug action. The method, which requires no prior knowledge of the bound state, is a first step toward the incorporation of ligand kinetics into in silico drug development protocols.

11.
Biophys J ; 101(4): 774-80, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21843467

ABSTRACT

Single-stranded RNA (ssRNA) viruses form a major class that includes important human, animal, and plant pathogens. While the principles underlying the structures of their protein capsids are generally well understood, much less is known about the organization of their encapsulated genomic RNAs. Cryo-electron microscopy and x-ray crystallography have revealed striking evidence of order in the packaged genomes of a number of ssRNA viruses. The physical determinants of such order, however, are largely unknown. We study here the relative effect of different energetic contributions, as well as the role of confinement, on the genome packaging of a representative ssRNA virus, the bacteriophage MS2, via a series of biomolecular simulations in which different energy terms are systematically switched off. We show that the bimodal radial density profile of the packaged genome is a consequence of RNA self-repulsion in confinement, suggesting that it should be similar for all ssRNA viruses with a comparable ratio of capsid size/genome length. In contrast, the detailed structure of the outer shell of the RNA density depends crucially on steric contributions from the capsid inner surface topography, implying that the various different polyhedral RNA cages observed in experiment are largely due to differences in the inner surface topography of the capsid.


Subject(s)
Genome, Viral/genetics , RNA Viruses/genetics , RNA, Viral/genetics , Capsid/chemistry , Crystallography, X-Ray , Humans , Levivirus/chemistry , Levivirus/genetics , Molecular Dynamics Simulation , Static Electricity , Virus Assembly/genetics
12.
J Mol Biol ; 400(4): 935-47, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20562027

ABSTRACT

A large number of single-stranded RNA viruses, which form a major class of all viruses, co-assemble their protein container and their genomic material. The multiple roles of the viral genome in this process are presently only partly understood. Recent experimental results indicate that RNA, in addition to its function as a repository for genetic information, could play important functional roles during the assembly of the viral protein containers. An investigation of the impact of genomic RNA on the association of the protein subunits may therefore provide further insights into the mechanism of virus assembly. We study here the impact of viral RNA on the association rates of the capsid proteins during virus assembly. As a case study, we consider the viral capsid of bacteriophage MS2, which is formed from 60 asymmetric (AB) and 30 symmetric (CC) protein dimers. Using Brownian dynamics simulations, we investigate the effect of the binding of an RNA stem-loop (the translational repressor) on the association rates of the capsid protein dimers. Our analysis shows that translational repressor binding results in self-association of AB dimers being inhibited, whilst association of AB with CC dimers is greatly enhanced. This provides an explanation for experimental results in which an alternating assembly pattern of AB and CC dimer addition to the growing assembly intermediate has been observed to be the dominant mode of assembly. The presence of the RNA hence dramatically decreases the number of dominant assembly pathways and thereby reduces the complexity of the self-assembly process of these viruses.


Subject(s)
Capsid Proteins/metabolism , Levivirus/physiology , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , RNA, Viral/metabolism , Virus Assembly , Dimerization , Levivirus/genetics , Models, Molecular , Protein Binding , Protein Structure, Quaternary
13.
Bioinformatics ; 22(21): 2695-6, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16940322

ABSTRACT

UNLABELLED: An automated procedure for the analysis of homologous protein structures has been developed. The method facilitates the characterization of internal conformational differences and inter-conformer relationships and provides a framework for the analysis of protein structural evolution. The method is implemented in bio3d, an R package for the exploratory analysis of structure and sequence data. AVAILABILITY: The bio3d package is distributed with full source code as a platform-independent R package under a GPL2 license from: http://mccammon.ucsd.edu/~bgrant/bio3d/


Subject(s)
Models, Chemical , Models, Molecular , Proteins/chemistry , Sequence Analysis, Protein/methods , Software , User-Computer Interface , Amino Acid Sequence , Computer Simulation , Internet , Molecular Sequence Data , Protein Conformation
14.
Nucleic Acids Res ; 33(18): 5749-62, 2005.
Article in English | MEDLINE | ID: mdl-16214808

ABSTRACT

A multivariate analysis of the backbone and sugar torsion angles of dinucleotide fragments was used to construct a 3D principal conformational subspace (PCS) of DNA duplex crystal structures. The potential energy surface (PES) within the PCS was mapped for a single-strand dinucleotide model using an empirical energy function. The low energy regions of the surface encompass known DNA forms and also identify previously unclassified conformers. The physical determinants of the conformational landscape are found to be predominantly steric interactions within the dinucleotide backbone, with medium-dependent backbone-base electrostatic interactions serving to tune the relative stability of the different local energy minima. The fidelity of the PES to duplex DNA properties is validated through a correspondence to the conformational distribution of duplex DNA crystal structures and the reproduction of observed sequence specific propensities for the formation of A-form DNA. The utility of the PES is demonstrated through its succinct and accurate description of complex conformational processes in simulations of duplex DNA. The study suggests that stereochemical considerations of the nucleic acid backbone play a role in determining conformational preferences of DNA which is analogous to the role of local steric interactions in determining polypeptide secondary structure.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , Base Sequence , Models, Molecular , Molecular Structure , Multivariate Analysis , Nucleic Acid Conformation , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...