Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 74(2): 366-378, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35000145

ABSTRACT

BACKGROUND: Although tamoxifen is the mainstay endocrine therapy for estrogen receptor-positive (ER+) breast cancer patients, the emergence of tamoxifen resistance is still the major challenge that results in treatment failure. Tamoxifen is very effective in halting breast cancer cell proliferation; nonetheless, the ability of tamoxifen to target cancer stem and progenitor cell populations (CSCs), a major key player for the emergence of tamoxifen resistance, has not been adequately investigated yet. Thus, we explored whether targeting CDK7 modulates CSCs subpopulation and tamoxifen resistance in ER+ breast cancer cells. METHODS: Mammosphere-formation assay, stem cell biomarkers and tamoxifen sensitivity were analyzed in MCF7 tamoxifen-sensitive cell line and its resistant counterpart, LCC2, following CDK7 targeting by THZ1 or siRNA. RESULTS: Analysis of clinically relevant data indicated that expression of stemness factor, SOX2, was positively correlated with CDK7 expression in tamoxifen-treated patients. Moreover, overexpression of the stemness gene, SOX2, was associated with shorter overall survival in those patients. Importantly, the number of CSC populations and the expression of CDK7, P-Ser118-ER-α and c-MYC were significantly higher in LCC2 cells compared with parental MCF-7 cells. Moreover, targeting CDK7 inhibited mammosphere formation, CSC-regulating genes, and CSC biomarkers expression in MCF-7 and LCC2 cells. CONCLUSION: Our data indicate, for the first time, that CDK7-targeted therapy in ER+ breast cancer ameliorates tamoxifen resistance, at least in part, by inhibiting cancer stemness. Thus, targeting CDK7 might represent a potential approach for relieving tamoxifen resistance in ER+ breast cancer.


Subject(s)
Breast Neoplasms , Tamoxifen , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Tamoxifen/pharmacology
2.
J Am Chem Soc ; 143(20): 7655-7670, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33988982

ABSTRACT

Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.


Subject(s)
Antibodies/immunology , Aptamers, Nucleotide/immunology , Neoplasms/immunology , Antibodies/chemistry , Aptamers, Nucleotide/chemistry , Humans , Neoplasms/therapy
3.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668685

ABSTRACT

Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2-specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.


Subject(s)
Carcinogenesis/metabolism , Drug Resistance, Neoplasm , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism , RNA, Neoplasm/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Survival , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , RNA, Neoplasm/genetics , TOR Serine-Threonine Kinases/genetics
4.
Cancers (Basel) ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854207

ABSTRACT

Ovarian cancer (OC) is one of the most fatal cancers in women worldwide. Currently, platinum- and taxane-based chemotherapy is the mainstay for the treatment of OC. Yet, the emergence of chemoresistance results in therapeutic failure and significant relapse despite a consistent rate of primary response. Emerging evidence substantiates the potential role of lncRNAs in determining the response to standard chemotherapy in OC. The objective of this narrative review is to provide an integrated, synthesized overview of the current state of knowledge regarding the role of lncRNAs in the emergence of resistance to platinum- and taxane-based chemotherapy in OC. In addition, we sought to develop conceptual frameworks for harnessing the therapeutic potential of lncRNAs in strategies aimed at enhancing the chemotherapy response of OC. Furthermore, we offered significant new perspectives and insights on the interplay between lncRNAs and the molecular circuitries implicated in chemoresistance to determine their impacts on therapeutic response. Although this review summarizes robust data concerning the involvement of lncRNAs in the emergence of acquired resistance to platinum- and taxane-based chemotherapy in OC, effective approaches for translating these lncRNAs into clinical practice warrant further investigation.

5.
Int J Mol Sci ; 21(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340192

ABSTRACT

Cyclin-dependent kinase (CDK)-7 inhibitors are emerging as promising drugs for the treatment of different types of cancer that show chemotherapy resistance. Evaluation of the effects of CDK7 inhibitor, THZ1, alone and combined with tamoxifen is of paramount importance. Thus, in the current work, we assessed the effects of THZ1 and/or tamoxifen in two estrogen receptor-positive (ER+) breast cancer cell lines (MCF7) and its tamoxifen resistant counterpart (LCC2) in vitro and in xenograft mouse models of breast cancer. Furthermore, we evaluated the expression of CDK7 in clinical samples from breast cancer patients. Cell viability, apoptosis, and genes involved in cell cycle regulation and tamoxifen resistance were determined. Tumor volume and weight, proliferation marker (Ki67), angiogenic marker (CD31), and apoptotic markers were assayed. Bioinformatic data indicated CDK7 expression was associated with negative prognosis, enhanced pro-oncogenic pathways, and decreased response to tamoxifen. Treatment with THZ1 enhanced tamoxifen-induced cytotoxicity, while it inhibited genes involved in tumor progression in MCF-7 and LCC2 cells. In vivo, THZ1 boosted the effect of tamoxifen on tumor weight and tumor volume, reduced Ki67 and CD31 expression, and increased apoptotic cell death. Our findings identify CDK7 as a possible therapeutic target for breast cancer whether it is sensitive or resistant to tamoxifen therapy.


Subject(s)
Breast Neoplasms/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Female , Humans , Mice , Xenograft Model Antitumor Assays , Cyclin-Dependent Kinase-Activating Kinase
6.
Naunyn Schmiedebergs Arch Pharmacol ; 389(3): 327-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26659823

ABSTRACT

Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on the kidney may limit their clinical use.


Subject(s)
Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Kidney Diseases/chemically induced , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors/metabolism , Tretinoin/adverse effects , Animals , Drug Synergism , Fibrin/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Retinoic Acid/agonists , Retinoic Acid Receptor alpha , Signal Transduction/drug effects , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...