Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1015, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200033

ABSTRACT

The detection of heavy metals in water, especially Pb2+ ions, is important due to their severe hazardous effects. To address this issue, a highly controlled hexagonal TiON/TiO2 heterostructure has been synthesized in this study. The fabrication process involved the utilization of atomic layer deposition and direct current sputtering techniques to deposit TiO2 and TiON layers onto a porous Al2O3 membrane used as a template. The resulting heterostructure exhibits a well-ordered hollow tube structure with a diameter of 345 nm and a length of 1.2 µm. The electrochemical sensing of Pb2+ ions in water is carried out using a cyclic voltammetry technique under both light and dark conditions. The concentration range for the Pb2+ ions ranges from 10-5 to 10-1 M. The sensitivity values obtained for the sensor are 1.0 × 10-6 in dark conditions and 1.0 × 10-4 in light conditions. The remarkable enhancement in sensitivity under light illumination can be attributed to the increased activity and electron transfer facilitated by the presence of light. The sensor demonstrates excellent reproducibility, highlighting its reliability and consistency. These findings suggest that the proposed sensor holds great promise for the detection of Pb2+ ions in water, thereby facilitating environmental monitoring, water quality assessment, and safety regulation across various industries. Furthermore, the eco-friendly and straightforward preparation techniques employed in its fabrication provide a significant advantage for practical and scalable implementation.

2.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37763857

ABSTRACT

A highly uniform spherical MoO2-MoO3/polypyrrole core-shell nanocomposite has been successfully synthesized as an optoelectronic photon sensing material, capable of detecting light in the UV, Vis, and IR domains. The nanocomposite is prepared through the oxidation of pyrrole using Na2MoO4, resulting in a uniform spherical morphology that has been confirmed by TEM, theoretical modeling, and SEM analyses. This morphology contributes to its promising optical behavior, characterized by a small bandgap of 1.36 eV. The optoelectronic photosensing capability of the nanocomposite has been evaluated across the UV, Vis, and IR spectra, demonstrating high efficiency. The photoresponsivity R values indicate the ability of the nanocomposite to generate hot electrons in response to incident photons. With an R value of 4.15 mA·W-1 at 440 nm, this optoelectronic device exhibits considerable promise for integration into an advanced technological apparatus. The detection (D) value of 9.30 × 108 Jones at 440 nm further confirms the high sensitivity in the Vis region. The excellent stability of the device can be attributed to the inherent MoO2-MoO3 oxide and Ppy polymer materials. This stability has been demonstrated through reproducibility studies and current-voltage measurements under various optical conditions. The combination of stability, efficiency, and sensitivity makes this optoelectronic device well suited for light sensing applications in both industrial and commercial settings. Its promising performance opens up opportunities for advancements in various fields requiring accurate and reliable light detection.

3.
Micromachines (Basel) ; 14(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37630103

ABSTRACT

This study highlights the utilization of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode for efficient and highly sensitive photon absorption, enabling the generation of green hydrogen through the production of hot electrons upon illumination. The nanocomposite is synthesized via a one-pot reaction using K2Cr2O7 and 2-aminobenzene-1-thiol monomer, and the presence of Cr2S3-Cr2O3 is confirmed by XRD and XPS analysis within the composite. The optical properties of the Cr2S3-Cr2O3/poly-2-aminobenzene-1-thiol composite exhibit wide spectral coverage from UV to IR, with a bandgap of 1.6 eV. The diverse morphological behavior observed in the composite correlates with its optical properties, with the cleft spherical particles of the pure polymer transforming into rod-like structures embedded within the polymer matrix. The generated hydrogen gas demonstrates an impressive efficiency of 40.5 mole/10.cm2.h through electrochemical testing. The current density (Jph) values are evaluated under different light frequencies using optical filters ranging from 730 to 340 nm, resulting in Jph values of 0.012 and 0.014 mA.cm-2, respectively. These findings present a promising avenue as green hydrogen for industrial applications, leveraging the potential of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode.

4.
Micromachines (Basel) ; 14(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630109

ABSTRACT

This study achieved the decoration of poly-3-methyl aniline (P3MA) with As2O3-As(OH)3 using K2S2O8 and NaAsO2 on the 3-methyl aniline monomer. This resulted in a highly porous nanocomposite polymer composite with wide absorption optical behavior, an average crystalline size of 22 nm, and a 1.73 eV bandgap. The photoelectrode exhibited a great electrical response for electroanalytical applications, such as photon sensing and photodiodes, with a Jph of 0.015 mA/cm2 and Jo of 0.004 mA/cm2. The variable Jph values ranged from 0.015 to 0.010 mA/cm2 under various monochromatic filters from 340 to 730 nm, which demonstrates high sensitivity to wavelengths. Effective photon numbers were calculated to be 8.0 × 1021 and 5.6 × 1021 photons/s for these wavelength values, and the photoresponsivity (R) values were 0.16 and 0.10 mA/W, respectively. These high sensitivities make the nanocomposite material a promising candidate for use in photodetectors and photodiodes, with potential for commercial applications in highly technological systems and devices. Additionally, the material opens up possibilities for the development of photodiodes using n- and p-type materials.

5.
Micromachines (Basel) ; 14(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512735

ABSTRACT

A uniform and highly porous reduced graphene oxide/poly-2-aminobenzene-1-thiol multi-layer (R-GO/P2ABT-ML) nanocomposite was synthesized and characterized. The uniform layer structure and porosity of the nanocomposite, combined with its conductivity, make it an ideal candidate for use as a pseudo supercapacitor. To enhance the capacitance behavior, a porous ball structure polypyrrole (PB-Ppy) was incorporated into the nanocomposite. When tested at 0.2 A/g, the capacitance values of the R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-Ppy were found to be 19.6 F/g and 92 F/g, respectively, indicating a significant increase in capacitance due to the addition of PB-Ppy. The energy density was also found to increase from 1.18 Wh.kg-1 for R-GO/P2ABT-ML to 5.43 Wh.kg-1 for R-GO/P2ABT-ML/PB-Ppy. The stability of the supercapacitor was found to be significantly enhanced by the addition of PB-Ppy. The retention coefficients at 100 and 500 charge cycles for R-GO/P2ABT-ML/PB-Ppy were 95.6% and 85.0%, respectively, compared to 89% and 71% for R-GO/P2ABT-ML without PB-Ppy. Given the low cost, mass production capability, and easy fabrication process of this pseudo capacitor, it holds great potential for commercial applications. Therefore, a prototype of this supercapacitor can be expected to be synthesized soon.

6.
Micromachines (Basel) ; 14(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512734

ABSTRACT

A Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was prepared using the photopolymerization reaction using AgNO3 as an oxidant. The size of the nanocomposite was about 40 nm, in which the morphology was confirmed using TEM and SEM analyses. The functional groups of Ag2S-Ag2O-Ag/P2ABT were confirmed using FTIR; also, XRD confirmed the inorganic Ag2S, Ag, and Ag2O formation. This nanocomposite has great performance in supercapacitor applications, with it tested in acidic (1.0 M HCl) and basic mediums (1.0 M NaOH). This pseudo-capacitor has great performance that appeared through the charge time in an acid medium in comparison to the basic medium with values of 118 s and 103 s, correspondingly. The cyclic voltammetry (CV) analysis further confirmed the excellent performance of the supercapacitor material, as indicated by the large area under the cyclic curve. The specific capacitance (CS) and energy density (E) values (at 0.3 A/g) were 92.5 and 44.4 F/g and 5.0 and 2.52 W·h·Kg-1 in the acidic and basic mediums, correspondingly. The charge transfer was studied through a Nyquist plot, and the produced Rs values were 4.9 and 6.2 Ω, respectively. Building on these findings, our objective is to make a significant contribution to the progress of supercapacitor technology through a prototype design soon.

7.
Micromachines (Basel) ; 14(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36985012

ABSTRACT

A graphene oxide (GO)/poly 3-methyl aniline (P3MA) photodetector has been developed for light detection in a broad optical region: UV, Vis, and IR. The 3-methyl aniline was initially synthesized via radical polymerization using an acid medium, i.e., K2S2O8 oxidant. Consequently, the GO/P3MA composite was obtained through the adsorption of GO into the surface of P3MA. The chemical structure and optical properties of the prepared materials have been illustrated via XRD, FTIR, SEM, and TEM analysis. The absorbance measurements demonstrate good optical properties in the UV, Vis, and near-IR regions, although a decrease in the bandgap from 2.4 to 1.6 eV after the composite formation was located. The current density (Jph) varies between 0.29 and 0.68 mA·cm-2 (at 2.0 V) under dark and light, respectively. The photodetector has been tested using on/off chopped light at a low potential, in which the produced Jph values decrease from 0.14 to 0.04 µA·cm-2, respectively. The GO/P3MA photodetector exhibits excellent R (and D) values of 4 and 2.7 mA·W-1 (0.90 × 109 and 0.60 × 109 Jones) in the UV (340 nm) and IR (730 nm) regions, respectively. The R and D values obtained here make the prepared photodetector a promising candidate for future light detection instruments.

8.
Daru ; 31(1): 13-27, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36991247

ABSTRACT

BACKGROUND: Adiposity and non-alcoholic fatty liver disease (NAFLD) are common characteristics of metabolic syndrome (MS). Understanding the underlying pathogenesis is crucial for the development of new remedies. Resveratrol controls obesity and glycemic disorders in patients with MS. OBJECTIVES: This study aimed to evaluate the effect of resveratrol and dulaglutide on adipose tissues and liver in rats with MS, declaring their possible mechanisms. METHODS: Rats allocated as Control, MS (induced by a high fat/ high sucrose diet for eight weeks), MS + Resveratrol (30 mg/kg/day orally), and MS + Dulaglutide (0.6 mg/kg twice weekly SC); drugs administration was in the last four weeks. Serum biochemical measurements were done. Liver and visceral fat were processed for biochemistry, histopathology, and immunohistochemistry. RESULTS: MS results demonstrated significantly increased systolic and diastolic blood pressure, anthropometric measurements, serum levels of alanine aminotransferase (ALT), glycemic indices, and lipids with decreased HDL-C. Tissue levels of leptin, malondialdehyde (MDA), and TNF-α reactivity significantly increased. Expression of adiponectin, PPARγ, and insulin growth factor-1 (IGF-1) decreased. Also, Western blotting mRNA gene expression of liver SIRT-1 was down-regulated. Resveratrol and dulaglutide significantly and effectively reversed MS complexity, ameliorating all findings, particularly NAFLD and adiposity-induced inflammation. Resveratrol significantly appears superior to dulaglutide regarding the effects on hemodynamics, lipids, adipokines, IGF-1 levels, and adipocyte size. Parallel, dulaglutide has more influence on glycemic control. CONCLUSION: Protective effects of the drugs may be through correlations between SIRT-1/adipokines/IGF-1 and PPARγ, improving the cross-talk between insulin resistance, obesity markers, liver dysfunction, and TNF-α. Promising multi-beneficial therapies of resveratrol or dulaglutide in MS are recommended clinically for this purpose. Showing the Experimental Design.


Subject(s)
Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Resveratrol/therapeutic use , Metabolic Syndrome/drug therapy , Insulin , Adipokines/metabolism , Adipokines/pharmacology , Adipokines/therapeutic use , PPAR gamma/metabolism , PPAR gamma/pharmacology , PPAR gamma/therapeutic use , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/therapeutic use , Adiposity , Tumor Necrosis Factor-alpha , Liver , Obesity/complications , Obesity/metabolism , Obesity/pathology , Diet , Lipids , Diet, High-Fat
9.
Appl Opt ; 61(7): 1668-1674, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35297843

ABSTRACT

The brilliant optical properties of plasmonic metal nitrides improve many applications. Modeling of light-confining Fano resonance based on a titanium nitride (TiN)-coated titanium oxide one-dimensional photonic crystal is investigated as a glucose sensor. There is a cavity layer filled with a glucose solution between the TiN thin layer and photonic crystals. The reflection spectrum is calculated numerically by using Bruggeman's effective medium approximation and transfer matrix method. The effect of plasmonic layer thickness, cavity layer thickness, and the thicknesses of the titanium oxide nanotube layers are optimized to achieve a high performance sensor. The result shows that the Fano resonances shift to higher wavelengths with increasing glucose concentration. The best sensitivity of the optimized biosensor is about 3798.32 nm/RIU. Also, the sensor performance parameters such as the limit of detection, figure of merit, and quality factor are discussed. The proposed sensor can be of potential interest due to its easy fabrication and higher performance than many previous reported sensors in the sensing field.


Subject(s)
Nanotubes , Glucose , Optics and Photonics , Titanium
10.
Eur J Pharmacol ; 912: 174511, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34547248

ABSTRACT

Cognitive impairments such as dementia are considered the biggest challenges for public health. Benzodiazepines are often prescribed for treatment of anxiety disorder but they are associated with elevated risk of dementia. The present study has been designed to evaluate the neuroprotective effect of telmisartan and metformin on diazepam-induced cognitive dysfunction in mice. Piracetam was used as an established nootropic agent. Mice were divided into 8 groups, group1; control group which received normal saline. groups 2, 3 and 4 were received telmisartan 0.3 mg/kg/day, metformin 100 mg/kg/day and piracetam 200 mg/kg/day respectively. group 5; DZP group that injected with diazepam 2.5 mg/kg, groups 6, 7 and 8 were received diazepam 2.5 mg/kg + telmisartan 0.3 mg/kg/day, metformin 100 mg/kg/day and piracetam 200 mg/kg/day respectively. All drugs were administrated for 15 successive days. Cognitive skills of the animals were examined with Elevated plus maze and Passive Shock Avoidance tests. Investigations of oxidative stress markers were performed. Gene expression levels of TNF-α, NFκB, Caspase 3 and AMPK were analyzed using RT-PCR. Histological and immunohistochemical techniques were performed in hippocampus using H&E, cresyl violet stain, anti GFAP and anti COX-2 immunostain. The study revealed that administration of diazepam increased initial and retention transfer latency as well as it decreased step down latency that means it caused memory impairment. There was a significant increase in hippocampal expression levels of TNF-α, NFκB, and Caspase 3 and downregulation of AMPK expression levels associated with increased neurodegeneration, astrocytes activation and COX-2 immunohistochemical staining. This study indicates that diazepam caused a decline in cognitive function depending on hippocampal activity. Telmisartan, a common antihypertensive agent and metformin, a traditional antidiabetic drug improved this cognitive dysfunction through their anti-oxidant and anti-inflammatory effect as they decreased initial and retention transfer latency as well as it increased step down latency. Also they decreased TNF-α, NFκB, and Caspase 3 and upregulated AMPK expression, moreover they ameliorated the hippocampal morphological alterations, GFAP and COX-2 immunoexpression.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cognitive Dysfunction/prevention & control , Hippocampus/drug effects , Metformin/pharmacology , Neuroprotective Agents/pharmacology , Nootropic Agents/pharmacology , Telmisartan/pharmacology , AMP-Activated Protein Kinases/genetics , Animals , Behavior, Animal/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Cell Death/drug effects , Cognitive Dysfunction/chemically induced , Diazepam/toxicity , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Maze Learning/drug effects , Metformin/therapeutic use , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Neuroprotective Agents/therapeutic use , Nootropic Agents/therapeutic use , Piracetam/pharmacology , Piracetam/therapeutic use , Signal Transduction/drug effects , Telmisartan/therapeutic use , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
11.
Sci Rep ; 11(1): 17572, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34475431

ABSTRACT

The unique optical properties of metal nitrides enhance many photoelectrical applications. In this work, a novel photodetector based on TiO2/TiN nanotubes was deposited on a porous aluminum oxide template (PAOT) for light power intensity and wavelength detection. The PAOT was fabricated by the Ni-imprinting technique through a two-step anodization method. The TiO2/TiN layers were deposited by using atomic layer deposition and magnetron sputtering, respectively. The PAOT and PAOT/TiO2/TiN were characterized by several techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX). The PAOT has high-ordered hexagonal nanopores with dimensions ~ 320 nm pore diameter and ~ 61 nm interpore distance. The bandgap of PAOT/TiO2 decreased from 3.1 to 2.2 eV with enhancing absorption of visible light after deposition of TiN on the PAOT/TiO2. The PAOT/TiO2/TiN as photodetector has a responsivity (R) and detectivity (D) of 450 mAW-1 and 8.0 × 1012 Jones, respectively. Moreover, the external quantum efficiency (EQE) was 9.64% at 62.5 mW.cm-2 and 400 nm. Hence, the fabricated photodetector (PD) has a very high photoelectrical response due to hot electrons from the TiN layer, which makes it very hopeful as a broadband photodetector.

SELECTION OF CITATIONS
SEARCH DETAIL
...