Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Colloids Surf B Biointerfaces ; 244: 114194, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39226846

ABSTRACT

Electrochemical studies were conducted to analyze the behavior of eugenol, CuCl2, and their complex using cyclic voltammetry. The oxidation mechanisms of eugenol and the redox behavior of copper ions were elucidated, showing differences in reversibility and charge transfer coefficients. Various kinetic and solvation parameters were determined. The redox behavior of CuCl2 was found to be more reversible compared to the copper-eugenol complex. The copper-eugenol complex exhibited enhanced antioxidant activity compared to eugenol and standard ascorbic acid. The eugenol was oxidized to form eugenol quinone methide through two postulated irreversible mechanisms. Molecular docking studies suggested higher potential bioactivity of the copper-eugenol complex towards the target protein of COVID-19 than the eugenol ligand.

2.
Int J Biol Macromol ; 277(Pt 2): 134347, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094872

ABSTRACT

Chitosan is used in many applications due to its biodegradability, biocompatibility, nontoxicity, nonadhesiveness, and film-forming capabilities. Chitosan has antibacterial and antifungal activities, which are two of its other desirable attributes. However, chitosan can only dissolve in acidic liquids (1-3 % acetic acid), limiting its practical application. The hydroxyl and amino functional groups in the chitosan backbone are essential for chemical modification, which is a viable alternative for overcoming this obstacle. So, N- or O-, and N, O-substituted chitosan may yield derivatives with increased water solubility, biocompatibility, biodegradability, and bio-evaluation. In the same manner, the physicochemical properties of chitosan, including its mechanical and thermal properties, can be improved by cross-linking reactions. This review provides an overview of chitosan, including its origins and their solubility. Also, the review extend and discuss in details most of all chemical reactions that happened on the amino group, hydroxyl group, or both amino group and hydroxyl group to create modified chitosan-based organic materials. Finally, the problems that still need to be solved and probable future areas for study are discussed.


Subject(s)
Chitosan , Solubility , Chitosan/chemistry , Biopolymers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
3.
Virus Res ; 349: 199444, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39089370

ABSTRACT

Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment. The sequence and length of the PB1-F2 protein can vary depending on the host of origin. While avian isolates typically carry full-length PB1-F2, isolates from mammals, often express truncated forms. The selective advantage of the full-length PB1-F2 in avian isolates is not fully understood. Most research on the role of PB1-F2 in influenza virus replication has been conducted in mammalian systems, where PB1-F2 interfered with the host immune response and induced apoptosis. Here, we used Low Pathogenicity (LP) AIV H7N7 expressing full-length PB1-F2 as well as a knockout mutant. We found that the full-length PB1-F2 of LPAIV prolonged survival of infected cells by limiting apoptotic cell death. Furthermore, PB1-F2 knockout LPAIV significantly decreased MHC-I expression on fibroblasts, delayed tissue healing and increased phagocytic uptake of infected cells, whereas LPAIV expressing PB1-F2 has limited effects. These findings indicate that full-length PB1-F2 enables AIV to cause prolonged infections without severely harming the avian host. Our observations may explain maintenance of AIV in the natural bird reservoir in absence of severe clinical signs.

4.
Avian Pathol ; : 1-57, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169883

ABSTRACT

Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broilers industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broilers' growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broilers' groups were fed 0, 150, 250, and 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and its virulence-related genes expression levels (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes infected broilers were restored post-inclusion at higher levels liposomal hesperetin, which reflects increasing the bird's resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1ß, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancing the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broilers` diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.

5.
Euro Surveill ; 29(30)2024 Jul.
Article in English | MEDLINE | ID: mdl-39056199

ABSTRACT

We investigated the thermostability of four European avian influenza A(H5N1) viruses in whole and semi-skimmed milk and their replication in bovine kidney and lung cells amid the current influenza A(H5N1) dairy cattle outbreak in the United States. Results showed strain-dependent differences in thermal inactivation, particularly in whole milk, and variable replication efficacy in lung cells. These findings support assessing the inactivation of European H5N1 viruses in milk and their replication in bovine cells, aiding biosafety protocols and public health measures.


Subject(s)
Influenza A Virus, H5N1 Subtype , Milk , Virus Replication , Animals , Cattle , Milk/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Virus Inactivation , Hot Temperature , Europe/epidemiology , Orthomyxoviridae Infections/virology , Disease Outbreaks/prevention & control , Lung/virology
6.
Environ Sci Pollut Res Int ; 31(35): 48369-48387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030453

ABSTRACT

Mitigating spill pollution in the Nile River is crucial to protecting aquatic life, water quality, and public health. Extensive studies focused on the assessment of water quality and hydrodynamics of the Nile River, but there have been relatively few studies that have applied integrated hydrodynamic and water quality modeling approaches to simulate actual accidents in the Nile Fourth Reach. The goal of this study is to develop advanced computational models to simulate accidental spills in the Nile River and track the resulting impacts on water quality. Hydrodynamic and water quality simulations were performed using Delft3D software for 144 km of the Nile River, Egypt, from El-Menia to Assuit. Once the hydrodynamic and water quality models were calibrated, two phosphate spill scenarios were modeled under maximum and minimum flow conditions. The spatial distribution of the spill plume along the studied river section was visualized every 12 h following the spill occurrence for both scenarios. The results of the research were calibrated and validated against measured field data. In addition, various error and performance indicators were calculated to thoroughly assess the rigor and reliability of the results. The results demonstrated that flow velocity was the main factor influencing the spill plume characteristics and behavior. Initially, advection force plays a significant role after a spill occurs. After that, phosphate becomes mixed and diluted through dispersion. The spill plume took less time to reach downstream areas during the period of maximum flow compared to minimum flow. Additionally, the concentration of phosphate decreased as the water flowed downstream. The spatial distribution of the spill over time can assist water treatment facilities in developing mitigation strategies to address the spill impacts. However, complex Nile River dynamics demand extensive computational power. Therefore, the model was simplified for spill events, using the modeling capabilities to analyze hypothetical spills and contaminant spread in the absence of real data.


Subject(s)
Hydrodynamics , Rivers , Water Quality , Egypt , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Water Pollution , Models, Theoretical
7.
Vet Res Commun ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083180

ABSTRACT

Hexaflumuron (HEX) insecticide is widely used in agriculture practices to fight crop insects. The toxicological effect of HEX on Nile tilapia (Oreochromis niloticus) was investigated in this study. Two hundred and forty fish (35.50 ± 1.45 g) were divided into six groups in four replicates (40 fish/group; 10 fish/replicate) and were exposed to six distinct HEX concentrations (0, 2, 4, 6, 8, and 10 mg L-1) for 96-h. The 96-h lethal concentration 50 (96-h LC50) of HEX was calculated to be 7.19 mg L-1. The fish exhibited reduced surface and middle swimming, aggressiveness, and tail-spreading behaviors with increasing bottom swimming and resting patterns after HEX exposure. HEX exposure resulted in body bleeding and fin rot. The erythrogram (red blood cell count, hemoglobin, and packed cell volume %) was significantly reduced with increased mean corpuscular volume by HEX exposure. HEX exposure decreased the white blood cells (WBCs) and differential WBC counts. Acute HEX exposure raised 8-hydroxy-2-deoxyguanosine level while lowering brain acetylcholine esterase activity. HEX exposure caused hepato-renal dysfunction and increased stress-related parameters (glucose and cortisol). Exposure to HEX reduced the immune responses (lysozyme, nitric oxide, immunoglobulin M, and complement 3). A substantial decrease in the antioxidant variables (reduced glutathione content and catalase) with increasing the malondialdehyde was noted by HEX exposure. Moreover, histopathological changes resulted from HEX exposure in the gills, liver, kidney, and spleen. These results indicate that HEX exposure induced behavioral changes, hepato-renal dysfunction, and immune-antioxidant disruption, indicating a possible physiological disruption in O. niloticus.

8.
BMC Vet Res ; 20(1): 303, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982442

ABSTRACT

BACKGROUND: The inappropriate use of pesticides including fungicides creates severe biological hazards that can endanger fish health and impede sustainable aquaculture. OBJECTIVE: This study investigated the negative impacts of metiram (MET), a fungicide on the health status of Nile tilapia (Oreochromis niloticus) for a 96-hour duration as an acute exposure in a static renewal system. METHODS: Three hundred fish (average body weight: 37.50 ± 0.22 g) were assigned into six groups (50 fish/group) with five replicates (10 fish/replicate). Fish were exposed to various six concentrations (0, 1.5, 3, 4.5, 6, and 7.5 mg/L) of MET as a water exposure to for 96-hour without water exchange. The fish's behavior, clinical signs, and mortalities were documented every day of the exposure period. Additionally, MET's impact on blood profile, stress biomarkers, hepato-renal functions, immune-antioxidant status, and brain biomarker were closely monitored. RESULTS: The lethal concentration (LC50) of MET estimated using Finney's probit technique was 3.77 mg/L. The fish's behavior was severely impacted by acute MET exposure, as clear by an increase in surfacing, loss of equilibrium, unusual swimming, laterality, abnormal movement, and a decline in aggressive behaviors. The survivability and hematological indices (white and red blood cell count, differential white blood cell count, hematocrit value, and hemoglobin) were significantly reduced in a concentration-dependent manner following MET exposure. Acute exposure to MET (1.5-7.5 mg/L) incrementally increased stress biomarkers (nor-epinephrine, cortisol, and glucose), lipid peroxides (malondialdehyde), and brain oxidative DNA damage biomarker (8-hydroxy-2-deoxyguanosine). A hepato-renal dysfunction by MET exposure (4.5-7.5 mg/L) was evidenced by the significant increase in the alanine and aspartate aminotransferases and creatinine values. Moreover, a substantial decline in the immune parameters (lysozyme, complement 3, serum bactericidal activity, and antiprotease activity) and antioxidant variables (total antioxidant capacity, superoxide dismutase, and glutathione peroxidase) resulted from acute MET exposure. CONCLUSION: According to these findings, the 96-hour LC50 of MET in Nile tilapia was 3.77 mg/L. MET exposure triggered toxicity in Nile tilapia, as seen by alterations in fish neuro-behaviors, immune-antioxidant status, hepato-renal functioning, and signifying physiological disturbances. This study emphasizes the potential ecological dangers provoked by MET as an environmental contaminant to aquatic systems. However, the long-term MET exposure is still needed to be investigated.


Subject(s)
Cichlids , Fungicides, Industrial , Animals , Cichlids/metabolism , Cichlids/physiology , Fungicides, Industrial/toxicity , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Biomarkers/blood , Lethal Dose 50 , Brain/metabolism , Brain/drug effects
9.
Virulence ; 15(1): 2379371, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39014540

ABSTRACT

The economic losses caused by high pathogenicity (HP) avian influenza viruses (AIV) in the poultry industry worldwide are enormous. Although chickens and turkeys are closely related Galliformes, turkeys are thought to be a bridging host for the adaptation of AIV from wild birds to poultry because of their high susceptibility to AIV infections. HPAIV evolve from low pathogenicity (LP) AIV after circulation in poultry through mutations in different viral proteins, including the non-structural protein (NS1), a major interferon (IFN) antagonist of AIV. At present, it is largely unknown whether the virulence determinants of HPAIV are the same in turkeys and chickens. Previously, we showed that mutations in the NS1 of HPAIV H7N1 significantly reduced viral replication in chickens in vitro and in vivo. Here, we investigated the effect of NS1 on the replication and virulence of HPAIV H7N1 in turkeys after inoculation with recombinant H7N1 carrying a naturally truncated wild-type NS1 (with 224 amino-acid "aa" in length) or an extended NS1 with 230-aa similar to the LP H7N1 ancestor. There were no significant differences in multiple-cycle viral replication or in the efficiency of NS1 in blocking IFN induction in the cell culture. Similarly, all viruses were highly virulent in turkeys and replicated at similar levels in various organs and swabs collected from the inoculated turkeys. These results suggest that NS1 does not play a role in the virulence or replication of HPAIV H7N1 in turkeys and further indicate that the genetic determinants of HPAIV differ in these two closely related galliform species.


Subject(s)
Chickens , Influenza A Virus, H7N1 Subtype , Influenza in Birds , Turkeys , Viral Nonstructural Proteins , Viral Tropism , Virus Replication , Animals , Turkeys/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Influenza in Birds/virology , Influenza A Virus, H7N1 Subtype/genetics , Influenza A Virus, H7N1 Subtype/pathogenicity , Chickens/virology , Virulence , Poultry Diseases/virology
10.
Article in English | MEDLINE | ID: mdl-39041332

ABSTRACT

The trail aimed to explore the effect of dietary supplementation of curcumin loaded olive oil nanoemulsion (CUR-OLNE) on growth performance, feed utilization, blood biochemical, redox status, and immune response of Litopenaeus vannamei shrimp, considering the economic efficiency of supplementation. A total of 280 healthy shrimps (3.42 ± 0.02 g) were randomly distributed into five equal groups and were fed diets containing 0 (CUR-OLNE0), 5(CUR-OLNE5), 10(CUR-OLNE10), 15(CUR-OLNE15) and 20 (CUR-OLNE20) mg CUR-OLNE/kg diet, respectively for 16 weeks. Among CUR-OLNE treated groups, CUR-OLNE20 showed the highest growth performance and feed utilization traits, including final body weight, specific growth rate, feed conversion ratio, and protein efficiency ratio. Notably, the photomicrographs provided further compelling evidence regarding the potential effect of CUR-OLNE supplementation on muscle structure and integrity. Compared to the control, the levels of blood protein significantly induced in CUR-OLNE15 and CUR-OLNE20 treated groups (p < 0.05). All CUR-OLNE -supplemented groups possessed lower activities of liver enzymes as well as the levels of urea and creatinine compared to the control (p < 0.05). The addition of 20 mg CUR-OLNE/kg diet decreased the concentrations of cortisol, glucose and triglycerides. The dietary treatment significantly improved the secretion of digestive enzymes, including amylase, lipase, and protease. The lowest levels of Malondialdehyde and the highest levels of total antioxidant capacity, super oxide dismutase, catalase, lysozyme and immunoglobulin M were detected in both of CUR-OLNE15, and CUR-OLNE20 treated groups compared to the control (p < 0.05). There were considerable significant effects of dietary supplementation of CUR-OLNE on economic efficiency. In conclusion, the application of nanocarriers for the delivery of dietary immune stimulants such as CUR-OLNE to Litopenaeus vannamei shrimp is a promising strategy for improving shrimp nutrition. The addition of 20 mg CUR-OLNE/kg to the diets of can be recommended as an affective intervention to improve growth performance, feed utilization, and health status of shrimp. Implementing this intervention can maximize the economic efficiency of shrimp farming while promoting sustainable practices in the industry.

11.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928804

ABSTRACT

Cassava is a staple crop in developing countries because its starchy roots provide essential dietary carbohydrates. The aim of this research was to conduct a comprehensive inquiry and scientific evaluation of the nutritional value of cassava tubers. Eight nutritional characteristics were examined in native and imported cassava variants: starch, reduced sugar, anthocyanins, protein, dietary fiber, quinic acid, vitamin C, and dry matter content. Principal component analysis (PCA) was conducted to minimize the dimensionality of the nutritional markers. A scientific assessment technique was developed to calculate a composite score for the various cassava samples. Analysis of the data revealed noticeable variance among the samples' nutritional indicators, suggesting varying degrees of association. Starch had a substantial positive link with lower sugar, protein, and dry matter content (p < 0.01). Anthocyanins and quinic acid interacted favorably (p < 0.05), and a positive link between protein and dry matter content was observed (p < 0.05); however, protein and dietary fiber interacted negatively (p < 0.05). The contribution rate of the top three PCA factors was over 76%, demonstrating that these factors incorporated the primary information acquired from the eight original nutritional indices, while maintaining excellent representativeness and impartiality. The experimental results showed a preliminary nutritional grade for 22 cassava tuber samples. The top five types were Guangxi Muci, Gui Cassava 4, Glutinous Rice Cassava, Huifeng 60, and Dongguan Hongwei. In the cluster analysis, the levels of similarity between the data showed that the 22 types of cassava tubers could be grouped into five categories, each with their own set of nutrients. This study promotes the directed breeding of cassava species and offers a theoretical foundation for creating and using various cassava varieties. Furthermore, this work lays the groundwork for a systematic and dependable technique for the quality assessment, comprehensive evaluation, and reasonable classification of cassava species and similar crops.

12.
Vet Res Commun ; 48(4): 2513-2525, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869748

ABSTRACT

Bacterial illness causes detrimental impacts on fish health and survival and finally economic losses for the aquaculture industry. Antibiotic medication causes microbial resistance, so alternative control strategies should be applied. In this work, we investigated the probiotic-medicated diet as an alternative control approach for antibiotics in treating Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). One hundred eighty fish (50 ± 2.5 g Mean ± SD) were allocated into six groups in glass aquariums (96 L) in triplicate for 10 days. Groups 1 (G1), G2, and G 3 were intraperitoneally (IP) injected with 0.5 mL sterilized tryptic soy broth and fed on a basal diet, basal diet contained B. subtilis (BS) (1 × 10 5 CFU/ kg-1 diet), and basal diet contained trimethoprim-sulfamethoxazole (TMP-SMX) (1.5 g/kg-1 diet), respectively. Additionally, G4, G5, and G6 were IP challenged with 0.5 mL of V. cholerae (1.5 × 107 CFU) and received the same feeding regime as G 1 to 3, respectively. The results exhibited that the V. cholera-infected fish exhibited skin hemorrhage, fin rot, and the lowest survival (63.33%). Additionally, lowered immune-antioxidant biomarkers (white blood cells count, serum bactericidal activity, phagocytic activity, phagocytic index, and lysozymes) with higher lipid peroxidation marker (malondialdehyde) were consequences of V. cholerae infection. Noteworthy, fish-fed therapeutic diets fortified with BS and TMP-SMX showed a substantial amelioration in the clinical signs and survival. The BS diet significantly improved (P < 0.05) the immune-antioxidant indices of the infected fish compared to the TMP-SMX diet. The current findings supported the use of a BS-enriched diet as an eco-friendly approach for the control of V. cholerae in O. niloticus.


Subject(s)
Animal Feed , Bacillus subtilis , Cichlids , Diet , Fish Diseases , Probiotics , Vibrio cholerae , Animals , Cichlids/immunology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Fish Diseases/immunology , Probiotics/administration & dosage , Probiotics/pharmacology , Animal Feed/analysis , Diet/veterinary , Vibrio cholerae/drug effects , Vibrio Infections/veterinary , Vibrio Infections/prevention & control , Dietary Supplements/analysis
13.
PLoS One ; 19(6): e0300748, 2024.
Article in English | MEDLINE | ID: mdl-38889121

ABSTRACT

The current study aimed to assess the influence of dietary inclusion of cyanobacterium Arthrospira platensis NIOF17/003 as a dry material and as a free-lipid biomass (FL) on the growth performance, body composition, redox status, immune responses, and gene expression of whiteleg shrimp, Litopenaeus vannamei postlarvae. L. vannamei were fed five different supplemented diets; the first group was fed on an un-supplemented diet as a negative control group (C-N), the second group was fed on a commercial diet supplemented with 2% of A. platensis complete biomass as a positive control group (C-P20), whereas, the three remaining groups were fed on a commercial diet supplemented with graded amounts of FL at 1%, 2%, and 3% (FL10, FL20, and FL30, respectively). The obtained results indicated that the diet containing 1% FL significantly increased the growth performance, efficiency of consumed feed, and survival percentage of L. vannamei compared to both C-N and C-P20 groups. As for the carcass analysis, diets containing A. platensis or its FL at higher levels significantly increased the protein, lipid, and ash content compared to the C-N group. Moreover, the shrimp group fed on C-P20 and FL10 gave significantly stimulated higher digestive enzyme activities compared with C-N. The shrimp fed C-P20 or FL exhibited higher innate immune responses and promoted their redox status profile. Also, the shrimp fed a low FL levels significantly upregulated the expression of both the peroxiredoxin (Prx) and prophenoloxidase (PPO1) genes than those receiving C-N. The current results recommended that dietary supplementation with 1% FL is the most effective treatment in promoting the performance and immunity of whiteleg shrimp.


Subject(s)
Animal Feed , Body Composition , Oxidation-Reduction , Penaeidae , Spirulina , Animals , Penaeidae/growth & development , Penaeidae/immunology , Penaeidae/genetics , Animal Feed/analysis , Dietary Supplements , Biomass , Immunity, Innate/drug effects , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Gene Expression Regulation/drug effects , Enzyme Precursors/metabolism , Enzyme Precursors/genetics
14.
Article in English | MEDLINE | ID: mdl-38879794

ABSTRACT

Aquafeed additive quality and quantity remain pivotal factors that constrain the sustainability and progress of aquaculture feed development. This study investigates the impact of incorporating the benthic diatom Amphora coffeaeformis into the diet of Nile tilapia (Oreochromis niloticus) broodstock, on the blood biochemistry, steroid hormone (SH) levels and seed production efficiency. Broodstock females displaying mature ovary indications were initially combined with males at a ratio of three females to one male. A total of 384 adult Nile tilapia (288 females and 96 males) were used, with 32 fish (24 females and eight males) assigned to each of 12 concrete tanks (8 m³; 2 m × 4 m × 1 m), with three replicate tanks for each dietary treatment, throughout a 14-day spawning cycle until egg harvest. Fish were fed one of four different dietary treatments: AM0% (control diet), and AM2%, AM4% and AM6% enriched with the diatom A. coffeaeformis at levels of 20, 40 and 60 g/kg of diet respectively. At the trial's conclusion, total protein, albumin, triglyceride and creatinine), SHs (follicle-stimulating hormone, luteinizing hormone, free testosterone, total testosterone, progesterone and prolactin) and seeds production efficiency of Nile tilapia improved significantly (p < 0.05) in alignment with the increment of A. coffeaeformis supplementation. The findings propose that including A. coffeaeformis at levels ranging from 4% to 6% could be effectively employed as a feed additive during the Nile tilapia broodstock's spawning season.

15.
J Environ Manage ; 363: 121243, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852412

ABSTRACT

Accurate identification of groundwater potential areas in arid regions is an important task for groundwater management and sustainability. As a result, this study used the innovative integration of remote sensing (RS), geographic information system (GIS), watershed modeling system (WMS), geophysical survey, and water mass balance equation to identify potential groundwater areas in the W. Dara, Eastern Desert, Egypt. A weighted spatial probability model (WSPM) of groundwater potential based on eight regulatory factors was implemented within ArcGIS software. Drainage density (DD), precipitation (P), net groundwater recharge (NGR), terrain slope (TS), lineament density (LD), lithologic group (LG), water quality (TDS), and depth to groundwater level (DGW) are the aspects considered. The Analytical hierarchy process (AHP) method was used to assign weights to these parameters, and their accuracy was estimated using the consistency ratio (CR). The resulting groundwater potential map classified W. Dara study area into five categories, ranging from very low to very high potential. A geophysical survey, in the form of Vertical Electrical Sounding (VES) and Transient Electromagnetic (TEM), was conducted along W. Dara to validate the results of the WSPM, which identified areas of high groundwater potential. The 1D inversion of VES/TEM shows that the central and western parts of W. Dara are considered the most promising areas for groundwater occurrence, and are located in areas of high and very high potential classes derived from WSPM. Moreover, the results of VES and TEM surveys showed that the proposed aquifers (Nubian Sandstone, Miocene, and Quaternary) in the study area are horizontally and vertically connected through a set of normal faults traversing NW-SE. Ten sites have been proposed for drilling additional exploitative wells in W. Dara area based on the WSPM and geophysical survey with the aim of sustainable development. Thus, the integrated techniques applied in this study proved effective in accurately determining the development strategy for arid and semi-arid coastal areas, especially those that suffer from scarcity of rainfall and increased agricultural reclamation requirements in remote areas.


Subject(s)
Geographic Information Systems , Groundwater , Remote Sensing Technology , Groundwater/analysis , Egypt , Environmental Monitoring/methods , Water Quality , Models, Theoretical
16.
Front Cell Infect Microbiol ; 14: 1358270, 2024.
Article in English | MEDLINE | ID: mdl-38895734

ABSTRACT

Introduction: Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods: A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results: Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion: This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Cichlids , Ligilactobacillus salivarius , Microbial Sensitivity Tests , Nanocomposites , Probiotics , Zinc , Animals , Biofilms/drug effects , Candida albicans/drug effects , Nanocomposites/chemistry , Antifungal Agents/pharmacology , Zinc/pharmacology , Probiotics/pharmacology , Humans , Ligilactobacillus salivarius/drug effects , Ligilactobacillus salivarius/physiology , Egypt , Nanoparticles/chemistry , Water Microbiology
17.
Asian Pac J Cancer Prev ; 25(6): 2105-2112, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918673

ABSTRACT

PURPOSE: The aim of this study was to investigate the detector size effect on small-field dosimetry and compare the performance of 6MV WFF/FFF techniques. METHODS: We investigated the detector size effect on small-field dosimetry and compared the performance of 6MV WFF/FFF techniques. PDD, profile curves, and absorbed dose were measured in water under reference conditions with 6MV (WFF/FFF) techniques. We employed Farmer FC65-P, CC13, CC01, and IBA Razor diode, with Versa Lineac. Subsequently, we replicated this assessment for small-fields under 5cmx5cm dimensions. RESULTS: For both 6MV WFF/FFF, significant dose differences (Dmax=1.47cm), were ±4.55%, ±6.7, ±12.75% and ±33.3% for 4cmx4cm, 3cmx3cm, 2cmx2cm, and 1cmx1cm, respectively. The average difference relative to D10 was observed to be ±4.66%, ±5.73%, ±6.58%, and ±8.75% for the previous field sizes. Differences between WFF/FFF are neglected values at all field sizes>2.3%, also, the output of the largest detector FC65-P is lower at 55% in the smallest field size. Variation in the profile doesn't exceed a difference of >5% in flatness between WFF/FFF at depth10cm, across all fields, while symmetry is >1%, but radiation output is considerably lower at 55% for FC65-P chamber in 2cmx2cm, 1cmx1cm compared to the CC01 chamber and Razor diode. Significant differences in 1cmx1cm, where FC65-P chamber exhibits around 49% difference compared to Razor diode with 6MV (WFF/FFF).  Conclusions: Significant differences were observed in doses with various detectors. Detector-size influences the dose. WFF/FFF techniques show no major differences in small-fields dosimetry. Utilize some situations the advantage of FFF boasting a higher dose rate, consequently reducing treatment time to half.


Subject(s)
Radiometry , Humans , Radiometry/methods , Radiotherapy Dosage , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging
18.
PLoS One ; 19(6): e0299480, 2024.
Article in English | MEDLINE | ID: mdl-38917116

ABSTRACT

This study evaluates the impact of dietary supplementation of the blue-green alga Arthrospira platensis NIOF17/003 nanoparticles (AN) on the growth performance, whole-body biochemical compositions, blood biochemistry, steroid hormonal, and fry production efficiency of Nile tilapia (Oreochromis niloticus) broodstock, during the spawning season. After a 21-day preparation period to equip the females and ensure that their ovaries were filled with eggs, mating between the mature females and males took place in a 3:1 ratio during a 14-day spawning cycle. A total of 384 tilapia broodstock 288 females and 96 males with an initial body weight of 450.53±0.75, were divided into four groups; AN0: a basal diet as a control group with no supplementation of Arthrospira platensis, and the other three groups (AN2, AN4, and AN6) were diets supplemented with nanoparticles of A. platensis at levels of 2, 4, and 6 g kg─1 diet, respectively. The results found that fish-fed group AN6 showed the highest significant differences in weight gain (WG), final weight (FW), feed conversion ratio (FCR), protein efficiency ratio (PER), and feed efficiency ratio (FER). Females fed the AN6 diet showed the highest significant fat content. Compared to the AN0 group, fish fed on the supplemented diets showed significant improvement (p < 0.05) in triglyceride, glucose, and aspartate aminotransferase (AST). A gradual increase in AN inclusion level resulted in a gradual increase in the concentrations of luteinizing hormone (LH), and follicle-stimulating hormone (FSH), testosterone, progesterone, and prolactin. The rates (%) of increase in fry production for females fed supplemented diets were 10.5, 18.6, and 32.2% for AN2, AN4, and AN6, respectively, compared to the control group. This work concluded that the inclusion levels of 6 g kg─1 of A. platensis nanoparticles in the diet of Nile tilapia broodstock significantly improved the growth performances, steroid hormone concentrations, and increased the fry production efficiency by 32.2%, respectively. These findings revealed that A. platensis nanoparticles resulted in a significantly enhanced female' reproductive productivity of Nile tilapia broodstock.


Subject(s)
Animal Feed , Cichlids , Dietary Supplements , Nanoparticles , Reproduction , Spirulina , Animals , Female , Reproduction/drug effects , Cichlids/growth & development , Cichlids/metabolism , Cichlids/physiology , Male , Animal Feed/analysis , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/metabolism
19.
Arch Ital Urol Androl ; 96(2): 12335, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38700009

ABSTRACT

OBJECTIVE: To investigate the correlation between antisperm antibodies (ASAs), pregnancy rates, and the method of conception following vasectomy reversal. This is particularly relevant as patients undergoing vasectomy reversal often express concerns about the potential inhibitory effects of ASAs on achieving pregnancy. Additionally, the American Urological Association guidelines for vasectomy emphasize the need for further research to address this question. PATIENT AND METHODS: We conducted a retrospective analysis involving chart reviews and phone interviews with individuals who underwent vasectomy reversal at our institution between May 2015 and April 2023. Patients who underwent vasectomy reversal for reasons other than fertility, as well as those lacking postoperative semen analysis with ASA data, were excluded. We classified patients based on low (below 50%) or high (50% or above) ASA levels determined by their initial postoperative semen analysis. The primary outcome measured was the pregnancy rate, including details on the method of conception. RESULTS: A total of 145 patients were subjected to chart review. The median age at the time of surgery was 43 years, with a median obstruction interval of 7.7 years. The median age of their partners was 29 years. The majority (80%) of patients underwent bilateral vasovasostomy. Among them, 60 patients (41.4%) exhibited low (< 50%) ASA levels, while 85 (58.6%) had high (≥ 50%) ASA levels. Follow-up phone interviews were completed by 48 patients. Among them, the 19 men with low ASA levels, 13 (68.4%) achieved pregnancy, with 6 (31.6%) experiencing spontaneous conception. For the 29 men with high ASA levels, 21 (72.4%) achieved pregnancy, including 11 (38%) through spontaneous conception. The p-value from Fisher's exact test was 0.2. CONCLUSIONS: Our findings suggest that ASA levels do not show a significant association with either the pregnancy rate or the method of conception following vasectomy reversal.


Subject(s)
Pregnancy Rate , Vasovasostomy , Humans , Pregnancy , Retrospective Studies , Female , Adult , Male , Vasovasostomy/methods , Spermatozoa/immunology , Middle Aged , Autoantibodies/immunology , Semen Analysis
20.
Fish Physiol Biochem ; 50(4): 1445-1460, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795269

ABSTRACT

Bacterial pathogens cause high fish mortalities and in turn economic losses in fish farms. Innovative strategies should be applied to control bacterial infections instead of antibiotics to avoid the resistance problem. Consequently, the present investigation studied the curative potential of Azadirachta indica leave ethanolic extract (AILEE) on Aeromonas veronii infection in Oreochromis niloticus. A preliminary trial was assessed to evaluate the curative dose of AILEE which was found to be 2.5 mg/L. One hundred and sixty fish were divided into equal four groups in four replications, where group 1 and group 2 were non-challenged and treated with 0- and 2.5-mg/L AILEE, respectively. Group 3 and group 4 were challenged with A. veronii and treated with 0- and 2.5-mg/L AILEE, respectively for 10 days. A. veronii infection produced severe clinical manifestations and a high mortality rate in the infected fish. Furthermore, the infected fish exhibited a significant rise in the hepatorenal indices (aspartate aminotransferase, alanine aminotransferase, and creatinine), the oxidant biomarker (malondialdehyde), and the stress indicators (glucose and cortisol). A significant reduction in the protein profile and antioxidant/immune parameters (catalase, immunoglobulin M, lysozyme, nitric oxide, and phagocytic activity) was observed in the infected fish. Water application of the infected group to 2.5-mg/L AILEE notably ameliorated the hepatorenal indices, the oxidant biomarker, and the stress indicators. Furthermore, AILEE improved the antioxidant/immune indices. Water application of 2.5-mg/L AILEE could be useful against A. veronii infection in O. niloticus culture.


Subject(s)
Aeromonas veronii , Azadirachta , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Plant Extracts , Plant Leaves , Animals , Azadirachta/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fish Diseases/drug therapy , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/drug therapy , Aeromonas veronii/drug effects , Plant Leaves/chemistry , Ethanol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL