Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 14(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39123797

ABSTRACT

Environmental enrichment is about improving the surroundings in which your animal lives by providing opportunities to express behavioral activity normally, which in turn has a great impact on the animal's welfare and productivity. The aim of the present study is to investigate the impact of using different enrichment cage tools (a rubber floor, plastic-colored balls, and a mirror) on rabbits' physiology, productivity, carcass quality, behavior, and welfare. A total of 84 weaned rabbits (V-line) were randomly and equally assigned to 4 groups, each with 7 replicates (3 rabbits/replicate). The 1st rabbit group (T1) served as a control, while the 2nd group (T2) was enriched with rubber floors. The 3rd group (T3) was enriched with plastic-colored balls, and the 4th group (T4) was enriched with mirrors. Productive traits, including the weekly body weight and feed intake, as well as the carcass characteristics, were measured. Hematological parameters and biochemical constituents were determined according to the reference's description. Furthermore, behavioral activities, such as walking, resting, feeding, and drinking, were observed. According to the results, enriching the rabbit cages with plastic-colored balls and mirrors improved the marketing body weight and feed conversion rate. It also improved carcass quality characteristics, such as the carcass weight and dressing percentage. The T3 and T4 rabbits had higher RBCS, Hb, and hematocrit levels as well as lower WBCS levels. They also had significantly higher total protein, globulin, glucose, AST, and IgG values than other treatments. In addition, they had significantly lower corticosterone levels and fear responses. Therefore, it is recommended to use plastic-colored balls and mirrors for rabbit farming for better productivity, behavior, and welfare.

2.
Tissue Eng Regen Med ; 21(6): 915-927, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38913224

ABSTRACT

BACKGROUND: Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS: In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS: Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS: These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.


Subject(s)
Adipose Tissue , Cell Differentiation , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Skin Aging , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Culture Media, Conditioned/pharmacology , Male , Adipose Tissue/cytology , Female , Rats , Mesenchymal Stem Cell Transplantation/methods , Galactose , Epidermal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL