Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122074, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36508901

ABSTRACT

A new, rapid, selective, green, and highly sensitive method has been established to determine ivabradine and carvedilol simultaneously. The first derivative synchronous spectrofluorimetric approach was applied for the determination of the studied drugs. Assessment of the first derivative amplitude of carvedilol and ivabradine has been done at 339 nm and 298 nm respectively which are the zero crossing points of each other. The method validation is estimated and was found to be consistent with International Conference on Harmonization guidelines. Linearity was found to be in the range of 10.0 to 90.0 ng/mL for carvedilol and from 80.0 to140.0 ng/mL for ivabradine. The detection limits were found to be 1.2 ng/ mL and 3.3 ng/mL and the quantitation limits were 3.7 ng / mL and 10.0 ng /mL for carvedilol and ivabradine, respectively. The method was effectively applied for the determination of both drugs in their synthetic mixture in different ratios and in their prepared co-formulated tablets. The results were compared with those of comparison HPLC methods. Ethanol was used as a green solvent. The proposed method is suitable for the determination of ivabradine and carvedilol with satisfactory accuracy and precision. The greenness of the method was evaluated using four assessment tools, i.e. NEMI, GAPI, Eco-scale, and AGREE. The proposed method is simple with a low cost compared to HPLC methods.


Subject(s)
Carvedilol , Ivabradine , Spectrometry, Fluorescence/methods , Solvents , Tablets
2.
Front Plant Sci ; 13: 998440, 2022.
Article in English | MEDLINE | ID: mdl-36762184

ABSTRACT

Fusarium verticillioides, an important maize pathogen, produce fumonisins, causes stalk rot and consequentially reduce crop growth and yield. Therefore, herein we aimed to evaluate the potential use of two farmyard soil organic manures, i.e., fresh (5-6 days old) and stored (5-6 months old) organic manure, to manage F. verticillioides infections as well as borer incidence and lodging in maize plants. After 30, 60, and 90 days of sowing, samples of soil, roots, and stems were collected to isolate F. verticillioides. Moreover, we estimated ear and kernel rot induced by F. verticillioides at the final harvest. Fresh organic manure treatment increased infection rates of F. verticillioides in soil, roots, stem and kernels compared to the control treatment. In contrast, stored organic manure plots treatments decrease F. verticillioides frequency. At 90 days after sowing, stored organic manure suppressed the survival of F. verticillioides, which reduced the F. verticillioides incidence percent. These results were similar to the effect of herbicides-and insecticide-treated plots demonstrated, which show a significant decrease in F. verticillioides incidence rates. Mycological analysis on symptomless kernels revealed a higher % of pathogen infection in opened husks variety (Balady) than closed husks variety (SC10). Compared with stored organic manure, the stem borer incidence and lodging percentage were the highest in fresh organic manure plots. Finally, these results demonstrated that storing organic manure within five to six months as farmyard manure led to high-temperature centigrade within organic manure, thereby destroying spores of F. verticillioides, whereas fresh organic manure did not.

SELECTION OF CITATIONS
SEARCH DETAIL
...