Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Article in English | MEDLINE | ID: mdl-38852852

ABSTRACT

OBJECTIVES: Bacillus anthracis clinical breakpoints, representing a systematic approach to guide clinicians in selecting the most appropriate antimicrobial treatments, are not part of the guidance from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). This is because defined distributions of MIC values and of epidemiological cut-off values (ECOFFs) have been lacking. In this study, a Europe-wide network of laboratories in collaboration with EUCAST, aimed at establishing standardized antimicrobial susceptibility testing methods, wild-type MIC distributions, and ECOFFs for ten therapeutically relevant antimicrobials. METHODS: About 335 B. anthracis isolates were tested by broth microdilution and disc diffusion methodologies. MIC and inhibition zone diameters were curated according to EUCAST SOP 10.2 and the results were submitted to EUCAST for ECOFFs and clinical breakpoint determination. RESULTS: Broth microdilution and disc diffusion data distributions revealed putative wild-type distributions for the tested agents. For each antimicrobial agent, ECOFFs were defined. Three highly resistant strains with MIC values of 32 mg/L benzylpenicillin were found. MIC values slightly above the defined ECOFFs were observed in a few isolates, indicating the presence of resistance mechanisms to doxycycline, tetracycline, and amoxicillin. DISCUSSION: B. anthracis antimicrobial susceptibility testing results were used by EUCAST to determine ECOFFs for ten antimicrobial agents. The MIC distributions were used in the process of determining clinical breakpoints. The ECOFFs can be used for the sensitive detection of isolates with resistance mechanisms, and for monitoring resistance development. Genetic changes causing phenotypic shifts in isolates displaying slightly elevated MICs remain to be investigated.

2.
J Vet Diagn Invest ; 36(2): 283-286, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426457

ABSTRACT

Glanders, caused by Burkholderia mallei, is a zoonotic disease of equids. Serologic testing for glanders is required by disease-free countries before international movement of equids. The World Organisation for Animal Health Terrestrial Manual recommends the complement fixation test (CFT) for clearance of individual animals for movement, but the CFT is prone to false-positive results. A colorimetric western blot (WB) assay was developed and validated to resolve false-positive CFT results; however, that assay is relatively time-consuming, and the interpretation is subjective. We present here a procedurally similar chemiluminescent WB assay that performs comparably to the validated colorimetric WB assay and offers noticeable benefits of decreased time-to-result and greater ease of interpretation.


Subject(s)
Burkholderia mallei , Glanders , Horse Diseases , Horses , Animals , Glanders/diagnosis , Blotting, Western/veterinary , Zoonoses , Complement Fixation Tests/veterinary
4.
BMC Genomics ; 24(1): 258, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173617

ABSTRACT

BACKGROUND: Bacterial epidemiology needs to understand the spread and dissemination of strains in a One Health context. This is important for highly pathogenic bacteria such as Bacillus anthracis, Brucella species, and Francisella tularensis. Whole genome sequencing (WGS) has paved the way for genetic marker detection and high-resolution genotyping. While such tasks are established for Illumina short-read sequencing, Oxford Nanopore Technology (ONT) long-read sequencing has yet to be evaluated for such highly pathogenic bacteria with little genomic variations between strains. In this study, three independent sequencing runs were performed using Illumina, ONT flow cell version 9.4.1, and 10.4 for six strains of each of Ba. anthracis, Br. suis and F. tularensis. Data from ONT sequencing alone, Illumina sequencing alone and two hybrid assembly approaches were compared. RESULTS: As previously shown, ONT produces ultra-long reads, while Illumina produces short reads with higher sequencing accuracy. Flow cell version 10.4 improved sequencing accuracy over version 9.4.1. The correct (sub-)species were inferred from all tested technologies, individually. Moreover, the sets of genetic markers for virulence, were almost identical for the respective species. The long reads of ONT allowed to assemble not only chromosomes of all species to near closure, but also virulence plasmids of Ba. anthracis. Assemblies based on nanopore data alone, Illumina data alone, and both hybrid assemblies correctly detected canonical (sub-)clades for Ba. anthracis and F. tularensis as well as multilocus sequence types for Br. suis. For F. tularensis, high-resolution genotyping using core-genome MLST (cgMLST) and core-genome Single-Nucleotide-Polymorphism (cgSNP) typing produced highly comparable results between data from Illumina and both ONT flow cell versions. For Ba. anthracis, only data from flow cell version 10.4 produced similar results to Illumina for both high-resolution typing methods. However, for Br. suis, high-resolution genotyping yielded larger differences comparing Illumina data to data from both ONT flow cell versions. CONCLUSIONS: In summary, combining data from ONT and Illumina for high-resolution genotyping might be feasible for F. tularensis and Ba. anthracis, but not yet for Br. suis. The ongoing improvement of nanopore technology and subsequent data analysis may facilitate high-resolution genotyping for all bacteria with highly stable genomes in future.


Subject(s)
Bacillus anthracis , Brucella suis , Francisella tularensis , Nanopores , Francisella tularensis/genetics , Brucella suis/genetics , Bacillus anthracis/genetics , Multilocus Sequence Typing , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
5.
Front Vet Sci ; 9: 1056996, 2022.
Article in English | MEDLINE | ID: mdl-36452150

ABSTRACT

Although glanders has been eradicated in most of the developed world, the disease still persists in various countries such as Brazil, India, Pakistan, Bangladesh, Nepal, Iran, Bahrain, UAE and Turkey. It is one of the notifiable diseases listed by the World Organization for Animal Health. Occurrence of glanders imposes restriction on equestrian events and restricts equine movement, thus causing economic losses to equine industry. The genetic diversity and global distribution of the causing agent, Burkholderia (B.) mallei, have not been assessed in detail and are complicated by the high clonality of this organism. Among the identification and typing methods, PCR-based methods for distinguishing B. mallei from its close relative B. pseudomallei as well as genotyping using tandem repeat regions (MLVA) are established. The advent and continuous advancement of the sequencing techniques and the reconstruction of closed genomes enable the development of genome guided epidemiological tools. For achieving a higher genomic resolution, genotyping methods based on whole genome sequencing data can be employed, like genome-wide single nucleotide polymorphisms. One of the limitations in obtaining complete genomic sequences for further molecular characterization of B. mallei is its high GC content. In this review, we aim to provide an overview of the widely used detection and typing methods for B. mallei and illustrate gaps that still require development. The genomic features of Burkholderia, their high homology and clonality will be first described from a comparative genomics perspective. Then, the commonly used molecular detection (PCR systems) and typing systems (e.g., multilocus sequence typing, variable number of tandem repeat analysis) will be presented and put in perspective with recently developed genomic methods. Also, the increasing availability of B. mallei genomic sequences and evolution of the sequencing methods offers exciting prospects for further refinement of B. mallei typing, that could overcome the difficulties presently encountered with this particular bacterium.

6.
Microorganisms ; 10(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889189

ABSTRACT

Brucellosis, mainly caused by Brucella (B.) melitensis, is associated with a risk of chronification and relapses. Antimicrobial susceptibility testing (AST) standards for B. melitensis are not available, and the agent is not yet listed in the EUCAST breakpoint tables. CLSI recommendations for B. melitensis exist, but they do not fulfill the requirements of the ISO 20776 standard regarding the culture medium and the incubation conditions. Under the third EU Health Programme, laboratories specializing in the diagnostics of highly pathogenic bacteria in their respective countries formed a working group within a Joint Action aiming to develop a suitable method for the AST of B. melitensis. Under the supervision of EUCAST representatives, this working group adapted the CLSI M45 document to the ISO 20776 standard after testing and validation. These adaptations included the comparison of various culture media, culture conditions and AST methods. A Standard Operation Procedure was derived and an interlaboratory validation was performed in order to evaluate the method. The results showed pros and cons for both of the two methods but also indicate that it is not necessary to abandon Mueller-Hinton without additives for the AST of B. melitensis.

7.
Pathogens ; 11(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35745468

ABSTRACT

Burkholderia (B.) mallei is a host-adapted equine pathogen that causes glanders, a re-emerging zoonotic disease, which is endemic in Pakistan and other developing countries and seriously impacts the global equine movement. Due to globalization, the geographical restriction of diseases vanishes and the lack of awareness of and experience with eradicated diseases in industrialized countries also promotes the re-introduction of infections in these regions. Owing to the high equine population, the Pakistani province Punjab is a potential hotspot where several glanders outbreaks have been seen over last two decades. For determining the genomic diversity of B. mallei in this and other equine-populated prefectures, the genomes of 19 B. mallei strains isolated between 1999 and 2020 in different locations were sequenced and their genotypes were determined. Particularly, for genetically highly homogenous pathogens like B. mallei genotyping techniques require a high discriminatory power for enabling differentiation on the strain level. Thus, core-genome single nucleotide polymorphism (cgSNP) analysis was applied for distinguishing the highly similar strains. Furthermore, a whole-genome sequence-based core genome multi locus sequence typing (cgMLST) scheme, specific to B. mallei, was developed and additionally applied to the data. It was found that B. mallei genotypes in Pakistan persisted over time and space and genotype clusters preferred connection with a time point rather than the place of isolation, probably due to frequent equine movement, which promotes the spread of glanders. The cgMLST approach proved to work in accord with SNP typing and may help to investigate future glanders outbreaks.

8.
Microorganisms ; 10(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35208915

ABSTRACT

Anthrax is a recurrent zoonosis in the Ukraine with outbreaks occurring repeatedly in certain areas. For determining whether several Bacillus anthracis genotypes are circulating in this region, four strains from various sources isolated from different regions of the Ukraine were investigated. By combining long- and short-read next-generation sequencing techniques, highly accurate genomes were reconstructed, enabling detailed in silico genotyping. Thus, the strains could be assigned to the Tsiankovskii subgroup of the "TransEurAsia" clade, which is commonly found in this region. Their high genetic similarity suggests that the four strains are members of the endemic population whose progenitor was once introduced in the Ukraine and bordering regions. This study provides information on B. anthracis strains from a region where there is little knowledge of the local population, thereby adding to the picture of global B. anthracis genotype distribution. We also emphasize the importance of surveillance and prevention methods regarding anthrax outbreaks, as other studies predicted a higher number of cases in the future due to global warming.

9.
Pathogens ; 10(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208761

ABSTRACT

Brucellosis is a highly contagious zoonosis that occurs worldwide. Whole-genome sequencing (WGS) has become a widely accepted molecular typing method for outbreak tracing and genomic epidemiology of brucellosis. Twenty-nine Brucella spp. (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were isolated from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats originating from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR. Illumina MiSeq® was used to sequence the 29 Brucella isolates. Using MLST typing, ST11 and ST1 were identified among B. melitensis and B. abortus, respectively. Brucella abortus and B. melitensis isolates were divided into two main clusters (clusters 1 and 2) containing two and nine distinct genotypes by core-genome SNP analysis, respectively. The genotypes were irregularly distributed over time and space in the study area. Both Egyptian B. abortus and B. melitensis isolates proved to be genomically unique upon comparison with publicly available sequencing from strains of neighboring Mediterranean, African, and Asian countries. The antimicrobial resistance mechanism caused by mutations in rpoB, gyrA, and gyrB genes associated with rifampicin and ciprofloxacin resistance were identified. To the best of our knowledge, this is the first study investigating the epidemiology of Brucella isolates from livestock belonging to different localities in Egypt based on whole genome analysis.

10.
Emerg Infect Dis ; 27(6): 1745-1748, 2021 06.
Article in English | MEDLINE | ID: mdl-34013856

ABSTRACT

We collected 10 Burkholderia mallei isolates from equids in 9 districts in India during glanders outbreaks in 2013-2016. Multilocus variable-number tandem-repeat analysis showed 7 outbreak area-related genotypes. The study highlights the utility of this analysis for epidemiologically tracing of specific B. mallei isolates during outbreaks.


Subject(s)
Burkholderia mallei , Glanders , Animals , Burkholderia mallei/genetics , Horses , India , Minisatellite Repeats , Molecular Typing
11.
J Clin Microbiol ; 59(7): e0288920, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33827898

ABSTRACT

Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.


Subject(s)
Bacillus anthracis , Bacillus anthracis/genetics , Europe , Genome, Bacterial/genetics , Germany , Humans , Italy , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide
12.
Front Vet Sci ; 8: 628389, 2021.
Article in English | MEDLINE | ID: mdl-33665218

ABSTRACT

Glanders, caused by Burkholderia (B.) mallei is a notifiable zoonotic disease in equidae. For international trade and movement of equids, certificates of negative serological test results for antibodies against B. mallei are required. To date, the complement fixation test (CFT) is the mandatory test to issue these health certificates. The CFT is difficult to standardize and, due to its poor specificity, often leads to false-positive reactions resulting in trade restrictions with considerable financial consequences. In the present study, the new ID Screen Glanders Double Antigen Multispecies ELISA (GLANDA- ELISA) (IDvet, Grabels, France) was evaluated using 400 negative and 370 glanders positive field samples of equidae. The GLANDA-ELISA was significantly more specific (99.8%) than the CFT (97.0%). Considering the comparable sensitivities of CFT (96.5%) and ELISA (98.1%), this new GLANDA-ELISA test appears a suitable confirmatory test and a realistic alternative for serological testing of horses for trade or movement.

13.
Front Vet Sci ; 7: 594498, 2020.
Article in English | MEDLINE | ID: mdl-33344532

ABSTRACT

Bovine brucellosis is a global zoonosis of public health importance. It is an endemic disease in many developing countries including Pakistan. This study aimed to estimate the seroprevalence and molecular detection of bovine brucellosis and to assess the association of potential risk factors with test results. A total of 176 milk and 402 serum samples were collected from cattle and buffaloes in three districts of upper Punjab, Pakistan. Milk samples were investigated using milk ring test (MRT), while sera were tested by Rose-Bengal plate agglutination test (RBPT) and indirect enzyme-linked immunosorbent assay (i-ELISA). Real-time PCR was used for detection of Brucella DNA in investigated samples. Anti-Brucella antibodies were detected in 37 (21.02%) bovine milk samples using MRT and in 66 (16.4%) and 71 (17.7%) bovine sera using RBPT and i-ELISA, respectively. Real-time PCR detected Brucella DNA in 31 (7.71%) from a total of 402 bovine sera and identified as Brucella abortus. Seroprevalence and molecular identification of bovine brucellosis varied in some regions in Pakistan. With the use of machine learning, the association of test results with risk factors including age, animal species/type, herd size, history of abortion, pregnancy status, lactation status, and geographical location was analyzed. Machine learning confirmed a real observation that lactation status was found to be the highest significant factor, while abortion, age, and pregnancy came second in terms of significance. To the authors' best knowledge, this is the first time to use machine learning to assess brucellosis in Pakistan; this is a model that can be applied for other developing countries in the future. The development of control strategies for bovine brucellosis through the implementation of uninterrupted surveillance and interactive extension programs in Pakistan is highly recommended.

14.
Microorganisms ; 8(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668648

ABSTRACT

Brucellosis is one of the most important worldwide zoonoses of many countries including Egypt. Camel brucellosis has not gained much attention in Egypt yet. This study is focused on the three governorates with the highest camel populations and the largest camel markets in the country to determine the disease seroprevalence and identify the Brucella species in local camel holdings. In total, 381 serum samples were collected from male and female camels from Giza, Aswan, and Al-Bahr Al-Ahmar (the Red Sea) governorates. Samples were serologically examined using the Rose-Bengal plate test (RBPT), indirect ELISA (i-ELISA), competitive ELISA (c-ELISA) and complement fixation test (CFT). Brucella antibodies were detected in 59 (15.5%), 87 (22.8%), 77 (20.2%) and 118 (31.0%) of sera by RBPT, i-ELISA, c-ELISA and CFT, respectively. Using real-time PCR, Brucella DNA was amplified in 32 (8.4%) seropositive samples including Brucella abortus (25/32), Brucella suis (5/32) and Brucella melitensis (2/32), defining a complex epidemiological status. To the best of our knowledge, this is the first study reporting Brucella suis DNA in camel serum. The risk-associated factors including age, sex, breed and geographical distribution were statistically analyzed, showing non-significant association with seroprevalence. The results of this study will raise awareness for camel brucellosis and help develop effective control strategies.

15.
Molecules ; 24(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835527

ABSTRACT

Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay.


Subject(s)
Bacterial Typing Techniques , Burkholderia mallei/classification , Machine Learning , Spectrum Analysis, Raman , Bacterial Typing Techniques/methods , Cluster Analysis , Humans , Spectrum Analysis, Raman/methods , Workflow
16.
Microorganisms ; 7(12)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766725

ABSTRACT

Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.

17.
Pathogens ; 8(4)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756893

ABSTRACT

Brucellosis is considered as endemic disease of animals and humans since thousands of years in Egypt. However, brucellosis in pigs has never been reported in Egypt. Thus, serological and molecular assays were applied to detect anti-Brucella antibodies and DNA in serum samples collected from pigs. In total 331 blood samples collected from male and female pigs at slaughterhouses of Cairo and Giza governorates were investigated using Brucella c- and i-ELISA and Brucella real-time PCR. Anti-Brucella antibodies were detected in 16 (4.83%) and 36 (10.8%) sera by i-ELISA and c-ELISA, respectively. Brucella DNA was detected in 10 (3.02%) seropositive samples and identified as Brucella melitensis (7/10) and Brucella suis (3/10). A higher prevelance was found in boars. This is the first study investigating pig brucellosis in Egypt. The results of this study will raise awareness for brucellosis in these farm animals and will help to develop effective control strategies.

18.
PLoS One ; 14(4): e0214963, 2019.
Article in English | MEDLINE | ID: mdl-30951554

ABSTRACT

Glanders is a zoonotic contagious disease of equids caused by Burkholderia (B.) mallei. Serodiagnosis of the disease is challenging because of false-positive and false-negative test results. The accuracy of the complement fixation test (CFT) which is prescribed for international trade by the World Organisation for Animal Health (OIE), five ELISAs and a Western blot (WB) were compared for serodiagnosis of glanders using sera from 3,000 glanders-free and 254 glanderous equids. Four ELISA tests are based on recombinant antigens (TssA, TssB, BimA and Hcp1), the IDVet ELISA is based on a semi-purified fraction of B. mallei and WB makes use of a purified LPS-containing B. mallei-antigen. Sensitivity and specificity of tests were estimated using cut-off values recommended by the test developers. The WB and all ELISAs, except BimA, were significantly more specific than the CFT. ELISAs based on TssA, TssB, and BimA antigens had significantly lower sensitivity compared to CFT while the sensitivities of the Hcp1-ELISA, the IDVet-ELISA and the WB did not differ significantly from that of the CFT. Given their comparable sensitivities and specificities, the CFT (98.0%, 96.4%), the WB (96.8%, 99.4%), the Hcp1-ELISA (95.3%, 99.6%) and the IDVet-ELISA (92.5%, 99.5%) should be further developed to meet OIE requirements.


Subject(s)
Antigens, Bacterial/blood , Blotting, Western , Burkholderia mallei , Complement Fixation Tests , Glanders/blood , Horses/blood , Animals , Antigens, Bacterial/immunology , Enzyme-Linked Immunosorbent Assay , Glanders/diagnosis , Glanders/immunology , Glanders/microbiology , Horses/immunology , Horses/microbiology
19.
Article in English | MEDLINE | ID: mdl-30533657

ABSTRACT

Here, we report the draft genome sequence of Taylorella equigenitalis strain 210217RC10635, a Gram-negative bacterium belonging to the genus Taylorella and the order Burkholderiales. Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM). The strain reported here was isolated in 2017 from a German stallion.

20.
Article in English | MEDLINE | ID: mdl-30533713

ABSTRACT

A Bacillus anthracis vaccine strain (Sterne), used as an attenuated laboratory comparative strain, was sequenced and analyzed. A comparison to assemblies of B. anthracis strain Sterne (NZ_CP009541 and NZ_CP009540) was performed. The lack of the pX02 plasmid and pX01 in approximately five copies was confirmed.

SELECTION OF CITATIONS
SEARCH DETAIL
...