Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 121(17): 4448-4455, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28394602

ABSTRACT

Transient electronic and vibrational absorption spectroscopies have been used to investigate whether UV-induced electron-driven proton transfer (EDPT) mechanisms are active in a chemically modified adenine-thymine (A·T) DNA base pair. To enhance the fraction of biologically relevant Watson-Crick (WC) hydrogen-bonding motifs and eliminate undesired Hoogsteen structures, a chemically modified derivative of A was synthesized, 8-(tert-butyl)-9-ethyladenine (8tBA). Equimolar solutions of 8tBA and silyl-protected T nucleosides in chloroform yield a mixture of WC pairs, reverse WC pairs, and residual monomers. Unlike previous transient absorption studies of WC guanine-cytosine (G·C) pairs, no clear spectroscopic or kinetic evidence was identified for the participation of EDPT in the excited-state relaxation dynamics of 8tBA·T pairs, although ultrafast (sub-100 fs) EDPT cannot be discounted. Monomer-like dynamics are proposed to dominate in 8tBA·T.


Subject(s)
Adenine/chemistry , DNA/chemistry , Protons , Thymine/chemistry , Ultraviolet Rays , Base Pairing , Electrons , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...