Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 764: 143861, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33383224

ABSTRACT

We present a case study on the impact of effluent from a wastewater lagoon-wetland system on phytoplankton and local primary production near a coastal Arctic community (Cambridge Bay) over spring to fall 2018. Results are also placed within an interannual and regional context for the surrounding Kitikmeot Sea. We find the shallow, relatively fresh Kitikmeot Sea is one of the most nutrient-deplete regions of the Arctic Ocean with NO3- + NO2- concentrations below the surface mixed layer rarely exceeding 2 µmol L-1 and a N:Si:P ratio of 1:6:1. The fjordal-type bathymetry of the main study site and a persistent pycnocline below the bay's exit sill led to slightly elevated N:Si:P of 3:11:1 through trapping of wastewater-sourced N at depth via sinking and remineralization of primary production. Total production in Cambridge Bay over the 3-month open water period was 12.1 g C m-2 with 70% of this production occurring during the 1-month discharge of wastewater into the system. Local primary production responded rapidly to high NO3- + NO2-, NH4+ and PON concentrations provided by wastewater effluent, comprising up to 20% of the production during the discharge period. Remaining production was mostly explained by the deep nutrient pool in the bay, which was only accessed towards the end of the discharge period as the diatom-dominated deep chlorophyll maximum settled below the pycnocline. Although not yet eutrophic, caution is raised at the rapid response of the marine system to wastewater release with a strong recommendation to develop a research and monitoring plan for the bay.


Subject(s)
Diatoms , Phytoplankton , Arctic Regions , Canada , Wastewater
2.
Ambio ; 46(Suppl 1): 53-69, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116680

ABSTRACT

The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.


Subject(s)
Carbon Cycle , Climate Change , Ice Cover , Arctic Regions , Ecological Parameter Monitoring , Oceans and Seas , Permafrost
3.
Environ Sci Technol ; 42(22): 8367-73, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19068819

ABSTRACT

Distribution of total mercury (THg), gaseous elemental Hg(0) (GEM), monomethyl Hg (MMHg), and dimethyl Hg (DMHg) was examined in marine waters of the Canadian Arctic Archipelago (CAA), Hudson Strait, and Hudson Bay. Concentrations of THg were low throughout the water column in all regions sampled (mean +/- standard deviation; 0.40 +/- 0.47 ng L(-1)). Concentrations of MMHg were also generally low atthe surface (23.8 +/- 9.9 pg L(-1)); however at mid- and bottom depths, MMHg was present at concentrations sufficient to initiate bioaccumulation of MMHg through Arctic marine foodwebs (maximum 178 pg L(-1); 70.3 +/- 37.3 pg L(-1)). In addition, at mid- and bottom depths, the % of THg that was MMHg was high (maximum 66%; 28 +/- 16%), suggesting that active methylation of inorganic Hg(II) occurs in deep Arctic marine waters. Interestingly, there was a constant, near 1:1, ratio between concentrations of MMHg and DMHg at all sites and depths, suggesting that methylated Hg species are in equilibrium with each other and/or are produced by similar processes throughout the water column. Our results also demonstrate that oceanographic processes, such as water regeneration and vertical mixing, affect Hg distribution in marine waters. Vertical mixing, for example, likely transported MMHg and DMHg upward from production zones at some sites, resulting in elevated concentrations of these species in surface waters (up to 68.0 pg L(-1)) where primary production and thus uptake of MMHg by biota is potentially highest. Finally, calculated instantaneous ocean-atmosphere fluxes of gaseous Hg species demonstrated that Arctic marine waters are a substantial source of DMHg and GEM to the atmosphere (27.3 +/- 47.8 and 130 +/- 138 ng m(-2) day(-1), respectively) during the ice-free season.


Subject(s)
Methylmercury Compounds/analysis , Seawater/chemistry , Water Movements , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Canada , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...