Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(12): 9013-9018, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31665608

ABSTRACT

Advances in molecular spintronics rely on the in-depth characterization of the molecular building blocks in terms of their electronic and, more importantly, magnetic properties. For this purpose, inert substrates that interact only weakly with adsorbed molecules are required in order to preserve their electronic states. Here, we investigate the magnetic-field response of a single paramagnetic 5,5'-dibromosalophenatocobalt(II) (CoSal) molecule adsorbed on a weakly interacting magnetic substrate, namely, Fe-intercalated graphene (GR/Fe) grown on Ir(111), by using spin-polarized scanning tunneling microscopy and spectroscopy. We have obtained local magnetization curves, spin-dependent tunneling spectra, and spatial maps of magnetic asymmetry for a single CoSal molecule, revealing its magnetic properties and coupling to the local environment. The distinct magnetic behavior of the Co metal center is found to rely strictly on its position relative to the GR/Fe moiré structure, which determines the level of hybridization between the GR/Fe surface π-system and the molecular orbitals.

2.
ACS Nano ; 11(9): 9200-9206, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28813591

ABSTRACT

Molecular spintronics is currently attracting a lot of attention due to its great advantages over traditional electronics. A variety of self-assembled molecule-based devices are under development, but studies regarding the reliability of the growth process remain rare. Here, we present a method to control the length of molecular spintronic chains and to make their terminations chemically inert, thereby suppressing uncontrolled coupling to surface defects. The temperature evolution of chain formation was followed by X-ray photoelectron spectroscopy to determine optimal growth conditions. The final structures of the chains were then studied, using scanning tunneling microscopy, as a function of oligomerization conditions. We find that short chains are readily synthesized with high yields and that long chains, even exceeding 70mers, can be realized under optimized growth parameters, albeit with reduced yields.

3.
Nano Lett ; 16(1): 577-82, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26704349

ABSTRACT

Molecular based spintronic devices offer great potential for future energy-efficient information technology as they combine ultimately small size, high-speed operation, and low-power consumption. Recent developments in combining atom-by-atom assembly with spin-sensitive imaging and characterization at the atomic level have led to a first prototype of an all-spin atomic-scale logic device, but the very low working temperature limits its application. Here, we show that a more stable spintronic device could be achieved using tailored Co-Salophene based molecular building blocks, combined with in situ electrospray deposition under ultrahigh vacuum conditions as well as control of the surface-confined molecular assembly at the nanometer scale. In particular, we describe the tools to build a molecular, strongly bonded device structure from paramagnetic molecular building blocks including spin-wires, gates, and tails. Such molecular device concepts offer the advantage of inherent parallel fabrication based on molecular self-assembly as well as an order of magnitude higher operation temperatures due to enhanced energy scales of covalent through-bond linkage of basic molecular units compared to substrate-mediated coupling schemes employing indirect exchange coupling between individual adsorbed magnetic atoms on surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...