Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 116(6): 2207-2211, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37931223

ABSTRACT

As Lycorma delicatula (White) continues to spread across the United States, more winegrapes are potentially susceptible to damage from this pest. Lycorma delicatula, spotted lanternfly, is primarily associated with Ailanthus altissima (Mill.) Swingle, a tree from its native range that is now globally distributed. While L. delicatula is a known pest of cultivated Vitis spp. in South Korea, its relationship with the specific grape species grown in the United States is unclear. This study assessed L. delicatula survivorship and development on 5 Vitis species, including 2 winegrape V. vinifera L. varieties, 'Pinot Noir' and 'Chardonnay', Concord grape, Vitis labrusca L., River grape, Vitis riparia Michx., and muscadine grape, Vitis rotundifolia Michx. var. 'Carlos'. A diet of A. altissima served as a positive control. Lycorma delicatula provided with a diet of V. riparia or V. vinifera 'Pinot Noir' yielded the highest survivorship and fastest rates of development among grape diets and were statistically equivalent to those provided with A. altissima. Vitis rotundifolia did not support L. delicatula growth past the third-instar life stage, indicating this species is a poor host for the early development of this pest. Our results indicate that both V. riparia and V. vinifera are favorable hosts for L. delicatula and may provide the means for this insect to invade and establish in new regions.


Subject(s)
Hemiptera , Vitaceae , Vitis , United States , Animals , Survivorship
2.
Ecol Evol ; 13(1): e9713, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36620402

ABSTRACT

The effects and extent of the impacts of agricultural insect pests in and around cropping systems is a rich field of study. However, little research exists on the presence and consequence of pest insects in undisturbed landscapes distant from crop hosts. Research in such areas may yield novel or key insights on pest behavior or ecology that is not evident from agroecosystem-based studies. Using the invasive fruit pest Drosophila suzukii (Matsumura) as a case study, we investigated the presence and resource use patterns of this agricultural pest in wild blackberries growing within the southern Appalachian Mountain range of North Carolina over 2 years. We found D. suzukii throughout the sampled range with higher levels of infestation (D. suzukii eggs/g fruit) in all ripeness stages in natural areas when compared with cultivated blackberry samples, but especially in under-ripe fruit. We also explored a direct comparison of oviposition preference between wild and cultivated fruit and found higher oviposition in wild berries when equal weights of fruit were offered, but oviposition was higher in cultivated berries when fruit number was equal. Forest populations laid more eggs in unripe wild-grown blackberries throughout the year than populations infesting cultivated berries. This suggests D. suzukii may change its oviposition and foraging behavior in relation to fruit type. Additionally, as D. suzukii exploits a common forest fruit prior to ripeness, further research is needed to explore how this affects wild food web dynamics and spillover to regional agroecosystems.

3.
Front Insect Sci ; 3: 1134070, 2023.
Article in English | MEDLINE | ID: mdl-38469543

ABSTRACT

Host range assessment for emerging invasive insects is a vital step toward fully defining the issues the insect may pose. Spotted lanternfly (SLF) is an invasive species that is rapidly expanding its presence in the United States. The primary hosts facilitating this spread are tree of heaven, a plant from SLF's native range, and the economically important winegrape. Black walnut is also implicated as an important and common host plant. This study investigated the survival and development of SLF on diets that included a variety of crop host plants in the presence or absence of tree of heaven. The following plant species, 'Honeycrisp' apple, 'Reliance' peach, silver maple, and tree of heaven were paired with winegrape or black walnut throughout the study. SLF had strong development and high survival on a diet of winegrape alone, and winegrape or black walnut paired with tree of heaven. Survival parameters were reduced with all other plant pairings. In particular, SLF in the winegrape and peach diet treatment did not develop past the third nymphal instar. A second experiment evaluated the survival of early and late instar nymphs and adult SLF life stages on three specialty crops - 'Cascade' hops, muscadine grapes, and kiwifruit over a two-week period. Nymphs survived longer than adults, with survival of first and second instar nymphs on hops not differing from the control tree of heaven treatment. The adult stage survived best on kiwi and muscadine grape. Our results show tree of heaven and winegrape were the only single plant diets evaluated that are sufficient for complete SLF development, while other host plants may require additional host or hosts of sufficient nutritional quality for SLF survival.

4.
J Environ Manage ; 307: 114480, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35085964

ABSTRACT

Emerging biotechnologies, such as gene drive technology, are increasingly being proposed to manage a variety of pests and invasive species. As one method of genetic biocontrol, gene drive technology is currently being developed to manage the invasive agricultural pest spotted-wing drosophila (Drosophila suzukii, SWD). While there have been calls for stakeholder engagement on gene drive technology, there has been a lack of empirical work, especially concerning stakeholder engagement to inform risk assessment. To help address this gap and inform future risk assessments and governance decisions for SWD gene drive technology, we conducted a survey of 184 SWD stakeholders to explore how they define and prioritize potential benefits and potential adverse effects from proposed SWD gene drive technology. We found that stakeholders considered the most important potential benefits of SWD gene drive technology to be: 1) Decrease in the quantity or toxicity of pesticides used, and 2) Decrease in SWD populations. Stakeholders were most concerned about the potential adverse effects of: 1) Decrease in beneficial insects, 2) Increase in non-SWD secondary pest infestations, and 3) Decrease in grower profits. Notably, we found that even stakeholders who expressed support for the use of SWD gene drive technology expressed concerns about potential adverse effects from the technology, emphasizing the need to move past simplistic, dichotomous views of what it means to support or oppose a technology. These findings suggest that instead of focusing on the binary question of whether stakeholders support or oppose SWD gene drive technology, it is more important to identify and assess the factors that are consequential to stakeholder decision making - including, for example, exploring whether and under what conditions key potential adverse effects and potential benefits would result from the use of SWD gene drive technology.


Subject(s)
Drosophila , Gene Drive Technology , Animals , Drosophila/genetics , Risk Assessment , Stakeholder Participation
5.
Front Insect Sci ; 2: 1025193, 2022.
Article in English | MEDLINE | ID: mdl-38468780

ABSTRACT

Lycorma delicatula, White (Hemiptera: Fulgoridae), spotted lanternfly, is a univoltine, phloem-feeding, polyphagous and invasive insect in the USA. Although a primary host for this species is Ailanthus altissima, tree of heaven, L. delicatula also feeds on a wide range of hosts important to the USA including cultivated grapevines. Due to the need for classical or augmentative biological control programs to reduce impacts of L. delicatula across invaded areas, we developed a laboratory-based rearing protocol for this invasive species. Here, we evaluated the use of A. altissima apical meristems, epicormic shoots, and fresh foliage cut from A. altissima as a food source for rearing newly hatched L. delicatula. On these sources of plant material <20% of L. delicatula developed into adults and no oviposition occurred. However, when young, potted A. altissima trees were used as a food source, >50% of L. delicatula nymphs developed to the adult stage under natural daylengths and temperatures ranging from 20-25°C. The addition of wild grapevine, Vitis riparia, did not increase survivorship or reduce development time. To elicit mating and oviposition, adults were provided with A. altissima logs as an oviposition substrate and maintained under shortened daylengths and reduced nighttime temperatures (12L:12D and 24°C:13°C). This resulted in 2.12 egg masses deposited per female, which was 4× more than when adults were maintained in standard rearing conditions (16L:8D and 25°C). Based on these experiments, we present a protocol for reliably rearing L. delicatula under laboratory and/or greenhouse conditions.

6.
J Econ Entomol ; 114(4): 1517-1522, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34114635

ABSTRACT

Flexibility in oviposition site selection under temporally shifting environmental conditions is an important trait that allows many polyphagous insects to flourish. Population density has been shown to affect egg-laying and offspring fitness throughout the animal kingdom. The effects of population density in insects have been suggested to be mutualistic at low densities, whereas intraspecific competition is exhibited at high densities. Here, we explore the effects of adult crowding and spatial resource variation on oviposition rate in the invasive pest Drosophila suzukii (Matsumura). In a series of laboratory experiments, we varied the density of adult males and females while holding oviposition substrate availability constant and measured per female oviposition rate using high and low-quality substrates. We found that oviposition behavior was affected more by substrate than adult density, though both variables had significant effects. When we varied the spatial arrangement of whole raspberries, we observed differences in oviposition rate and egg distribution between the grouped and solitary female treatments. Our results suggest that social interactions encourage oviposition, especially when exposed to unfamiliar or unnatural substrates. These results highlight the compensating effect of increased oviposition rate per female as adult populations decline. They will help researchers and crop managers better understand in-field population dynamics throughout the season as population densities change.


Subject(s)
Oviposition , Rubus , Animals , Choice Behavior , Drosophila , Seasons
7.
Sci Rep ; 11(1): 3796, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589670

ABSTRACT

The information that female insects perceive and use during oviposition site selection is complex and varies by species and ecological niche. Even in relatively unexploited niches, females interact directly and indirectly with conspecifics at oviposition sites. These interactions can take the form of host marking and re-assessment of prior oviposition sites during the decision-making process. Considerable research has focused on the niche breadth and host preference of the polyphagous invasive pest Drosophila suzukii Matsumura (Diptera: Drosophilidae), but little information exists on how conspecific signals modulate oviposition behavior. We investigated three layers of social information that female D. suzukii may use in oviposition site selection-(1) pre-existing egg density, (2) pre-existing larval occupation, and (3) host marking by adults. We found that the presence of larvae and host marking, but not egg density, influenced oviposition behavior and that the two factors interacted over time. Adult marking appeared to deter oviposition only in the presence of an unmarked substrate. These results are the first behavioral evidence for a host marking pheromone in a species of Drosophila. These findings may also help elucidate D. suzukii infestation and preference patterns within crop fields and natural areas.


Subject(s)
Drosophila/physiology , Oviposition/physiology , Social Behavior , Animals , Female , Fruit , Larva/genetics , Larva/physiology
8.
Insects ; 9(1)2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29301358

ABSTRACT

Invasive, polyphagous crop pests subsist on a number of crop and non-crop resources. While knowing the full range of host species is important, a seasonal investigation into the use of non-crop plants adjacent to cropping systems provide key insights into some of the factors determining local population dynamics. This study investigated the infestation of non-crop plants by the invasive Drosophila suzukii (Matsumura), a pest of numerous economically important stone and small fruit crops, by sampling fruit-producing non-crop hosts adjacent to commercial plantings weekly from June through November in central New York over a two-year period. We found D. suzukii infestation rates (number of flies emerged/kg fruit) peaked mid-August through early September, with Rubus allegheniensis Porter and Lonicera morrowii Asa Gray showing the highest average infestation in both years. Interannual infestation patterns were similar despite a lower number of adults caught in monitoring traps the second year, suggesting D. suzukii host use may be density independent.

10.
J Econ Entomol ; 108(2): 640-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470175

ABSTRACT

The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%.


Subject(s)
Drosophila , Insecticides/administration & dosage , Pesticide Synergists , Sucrose , Animals , Blueberry Plants , Fragaria
SELECTION OF CITATIONS
SEARCH DETAIL
...