Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Gels ; 10(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667687

ABSTRACT

Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box-Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system.

2.
Plants (Basel) ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37960029

ABSTRACT

It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36500833

ABSTRACT

Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into ß-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (ß-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 µg/mL) in comparison to SES (106 µg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.

4.
Pharmaceutics ; 14(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432670

ABSTRACT

Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.

5.
Life (Basel) ; 12(7)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35888099

ABSTRACT

The present investigation aims to improve the antimicrobial influence of certain antibacterial drugs, namely, neomycin (NEO), exploiting the benefits of natural oils such as tea tree oil (TTO). Therefore, a distinctive nanolipid formulation, namely, a nanoemulsion (NE), was developed using a Central Composite Factorial Design (CCD) approach depending on the amount of TTO and tween 80 as surfactant. The optimized NEO-NE formula exhibiting minimum globular size and maximum in vitro release was selected. For efficient topical delivery, NEO-NE was incorporated into a pre-formulated hydrogel. The developed NEO-NE-hydrogel was characterized by its physical characteristics such as pH, viscosity, and spreadability. Next, it was tested for stability under different conditions for 3 months. Ultimately, an irritation test was conducted followed by an antibacterial examination. The preparation demonstrated acceptable properties to be successfully applied topically. It showed non-significant changes in stability in both conditions up to 3 months storage when compared to a fresh preparation. It exhibited no irritation when applied on hairless animal skin. Finally, TTO revealed a good inhibition for the bacterial growth that could improve the influence of NEO antibacterial activity, indicating the efficiency of NE containing NEO prepared with TTO to be a promising antibacterial nanocarrier.

6.
Polymers (Basel) ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893989

ABSTRACT

Diabetes mellitus (DM) is a metabolic disorder associated with an increased blood glucose level. The world health burden of DM has increased as a result of numerous causes that necessitates suitable treatment. Pioglitazone (PGZ) is a generally prescribed medication for managing type II diabetes. However, its low solubility creates complications for its formulation. Therefore, the aim of the current study was to incorporate PGZ into a nanoemulsion (NE) formulation prepared with Nigella sativa oil (NSO) to boost the action of PGZ. To our knowledge, no previous study has addressed the combination and synergistic effect of PGZ and NSO as a hypoglycemic NE formulation intended for oral administration. An experiment was designed to test several PGZ-loaded NE formulations, varying factors such as NSO, surfactant and co-surfactant concentrations. These factors were investigated for their influence on responses including particle size and in vitro release. An optimized PGZ-loaded NE was selected and examined for its morphology, kinetic activity and stability. Further, the anti-diabetic effect of the optimized formulation was evaluated using diabetically induced rats. The optimized formula exhibited a good particle size of 167.1 nm and in vitro release of 89.5%. A kinetic study revealed that the drug release followed the Korsmeyer-Peppas mechanism. Additionally, the PGZ-loaded NE formulation was found to be stable, showing non-significant variation in the evaluated parameters when stored at 4 and 25 °C for a period of 3 months. In vivo investigation of the PGZ-loaded NE formulation showed a significant reduction in blood glucose level, which appeared to be enhanced by the presence of NSO. In conclusion, NS-NE could be a promising nanocarrier for enhancing the hypoglycemic effect of PGZ.

7.
Nanomaterials (Basel) ; 12(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807995

ABSTRACT

Currently, hyperlipidemia is a growing health issue that is considered a risk factor for obesity. Controlling body weight and modifying life style in most of cases are not adequate and the condition requires medical treatment. Statin drugs (mainly Atorvastatin (ATO)), have been used broadly and for long time as medications for handling higher levels of lipid, especially bad cholesterol, which accordingly controls the prevalence of obesity. Still, the obstacle that stands in front of any formulation is the poor solubility of the drug. Low solubility of ATO came up with poor absorption as well as poor bioavailability. This paved the way for the present study, which aimed to exploit nanotechnology and develop certain nanolipid carriers that could accommodate hydrophobic drugs, such as ATO. Nanostructured lipid carrier (NLC) containing ATO was fabricated using olive oil. Olive oil is natural plant oil possessing confirmed hypolipidemic activity that would help in improving the efficacy of the formulation. Via applying the Quality by Design (QbD) approach, one NLC formula was selected to be optimized based on appropriate size and higher entrapment. Optimized ATO-NLC was scrutinized for zeta potential, in vitro study and kinetic profile. Moreover, stability testing and in vivo hypolipidemic behavior was conducted. The optimized NLC formulation seemed to show particle size (254.23 nm) with neutral zeta potential (-1.77 mV) and entrapment efficiency (69.56%). The formulation could be prolonged for 12 h and provided higher % of release (97.17%). Stability testing confirmed the role of modifying the surface of the formulation with PEG-DSPE in providing a highly stable formulation that could withstand three months storage in two altered conditions. Ultimately, optimized ATO-NLC could successfully lower total cholesterol level in rats induced with obesity and fed a high-fat diet. Remarkably, ATO-NLC prepared with olive oil, in addition to shielding its surface, would provide a stable formulation that holds up the synergistic action between olive oil and ATO.

8.
Polymers (Basel) ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35808682

ABSTRACT

Presently, the nanotechnology approach has gained a great concern in the media of drug delivery. Gold nanoparticles (Au-NPs) specially having a non-spherical structure, such as gold nanorods (GNR), are attracting much interest as antibacterial agent and many other medical fields. The aim of the current investigation was to characterize Au-NPs and investigate their antimicrobial and wound healing efficacy in diabetic animals. MATERIAL AND METHODS: Au-NPs were characterized using a UV-Vis spectrophotometer, estimating their particle size, polydispersity (PDI), and assessing their morphological characters. Further, Au-NPs were estimated for their antibacterial and antifungal behavior. Ultimately, in vivo activity of Au-NPs was evaluated against excision wound healing in STZ-induced diabetic animals. RESULTS: Au-NPs were found to show maximum absorption at 520 nm. They exhibited a particle size of 82.57 nm with a PDI value of 0.323. Additionally, they exhibited good antimicrobial activity against different bacterial strains. Topical application of Au-NPs caused a significantly increased percentage of wound area reduction, lesser time needed for epithelialization, and augmented hydroxyproline, collagen, and hexosamine levels demonstrating enhanced healing processes. Furthermore, Au-NPs displayed a significant intensification in angiogenesis-related factors (HIF-1α, TGF-ß1, and VEGF), and antioxidant enzymes activities (CAT, SOD, GPx) as well as mitigated inflammatory mediators IL-6, IL-1ß, TNF-α, and NF-κB) and lipid peroxidation (MDA). CONCLUSION: Au-NPs exhibited proper particle size, and rod-shaped particles, with efficient antimicrobial behavior against different bacterial strains. Furthermore, Au-NPs demonstrated a promising wound healing activity in STZ-induced diabetic animals.

9.
Polymers (Basel) ; 14(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35746012

ABSTRACT

Fusidic acid (FA) is an efficient anti-bacterial drug proven to be efficient against a wide range of bacteria. Nevertheless, the main restriction in its formulation is the limited solubility. To avoid such an obstacle, the drug is incorporated into the lipid core of the nanolipid formulation. Consequently, the present study was an attempt to formulate nanolipid preparation, mainly, solid lipid nanoparticle (SLN) integrating FA. FA-SLN was prepared using shea butter as a lipid phase owing to its reported anti-bacterial activity. Different FA-SLNs were fabricated using the central composite design (CCD) approach. The optimized formula was selected and integrated into a hydrogel base to be efficiently used topically. FA-SLN-hydrogel was evaluated for its character, morphology, in vitro release and stability. The formula was examined for irritation reaction and finally evaluated for its anti-bacterial performance. The optimized formula showed particle size 283.83 nm and entrapment 73.057%. The formulated FA-SLN-hydrogel displayed pH 6.2, viscosity 15,610 cP, spreadability 51.1 mm and in vitro release 64.6% following 180 min. FA-SLN-hydrogel showed good stability for three months at different conditions (room temperature and refrigerator). It exhibited no irritation reaction on the treated rats. Eventually, shea butter displayed a noteworthy effect against bacterial growth that improved the effect of FA. This would indicate prospective anti-bacterial activity of FA when combined with shea butter in SLN formulation as a promising nanocarrier.

10.
Gels ; 8(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35621560

ABSTRACT

The purpose of the present study was to explore the influence of a certain natural essential oil, namely eucalyptus oil, as an anti-inflammatory agent in addition to its prospective role in enhancing the action of meloxicam in reducing inflammation. As far as we know, this has been the first integration of meloxicam and eucalyptus essential oil into a nanoemulgel formulation intended for topical use. Primarily, eucalyptus oil was utilized in developing a nanoemulsion formulation incorporating meloxicam. A 22 factorial design was constructed using two independent variables (oil concentration and surfactant concentration) with two responses (particle size and % of in vitro release). One optimized formula was selected depending on the desirability function and subjected to a stability study. The optimized nanoemulsion was mixed with HPMC as a gelling agent to produce a meloxicam-loaded nanoemulgel, which was examined for its properties, stability, in vitro release and ex vivo permeation. Eventually, the anti-inflammatory activity was evaluated and compared with a placebo and corresponding gel formulation. The developed nanoemulgel revealed acceptable physical characteristics to be applied topically. Studying of the in vitro release was conducted successfully for 6 h. The ex vivo permeation from the nanoemulgel formulations was prompted, showing an appropriate value of the steady-state transdermal flux (SSTF). As a final point, the anti-inflammatory activity of the developed nanoemulgel revealed a valued anti-inflammatory influence. Additionally, the concurrence of eucalyptus essential oil and meloxicam was assured, and their potential in combating and lowering inflammation was supported.

11.
Gels ; 8(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35448146

ABSTRACT

Fusidic acid (FA) is renowned as an effective bacteriostatic agent obtained from the fungus Fusidium coccineum, used for treating various eye and skin disorders. The objective of the present study was to develop, characterize, and evaluate the antibacterial activity of a novel FA nanoemulgel for topical skin application. Primarily, various fusidic acid nanoemulsion formulations were fabricated using different concentrations of myrrh essential oil, Tween 80 as a surfactant, and Transcutol® P as a co-surfactant. A Box−Behnken design was employed to select the optimized FA nanoemulsion formulation, based on the evaluated particle size and % of in vitro release as dependent variables. The optimized formula was incorporated within a hydrogel to obtain an FA nanoemulgel (FA-NEG) preparation. The formulated FA-NEG was evaluated for its visual appearance, pH, viscosity, and spreadability, compared to its corresponding prepared fusidic acid gel. In vitro release, kinetic study, and ex vivo drug permeation were implemented, followed by formulation stability testing. The FA-NEG exhibited a smooth and homogeneous appearance, pH value (6.61), viscosity (25,265 cP), and spreadability (33.6 mm), which were all good characteristics for appropriate topical application. A total of 59.3% of FA was released from the FA-NEG after 3 h. The ex vivo skin permeability of the FA-NEG was significantly enhanced by 3.10 ± 0.13-fold, showing SSTF of 111.2 ± 4.5 µg/cm2·h when compared to other formulations under investigation (p < 0.05). No irritation was observed upon applying the FA-NEG to animal skin. Eventually, it was revealed that the FA-NEG displayed improved antibacterial activity against a wide variety of bacteria when compared to its corresponding FA gel and marketed cream, indicating the prospective antibacterial effect of myrrh essential oil. In conclusion, the recommended formulation offers a promising antibacterial approach for skin infections.

12.
Curr Issues Mol Biol ; 43(3): 1741-1755, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34889889

ABSTRACT

OBJECTIVES: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. METHODS: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). RESULTS: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1ß, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. CONCLUSION: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acyclic Monoterpenes/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers , Biopsy , Disease Management , Disease Susceptibility , Male , Methotrexate/adverse effects , Oxidative Stress , Protective Agents/pharmacology , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
13.
AAPS PharmSciTech ; 22(8): 269, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34762193

ABSTRACT

Brucine, one of the natural medications obtained from Nux vomica seeds, is used as an anti-inflammatory drug. Several investigations were performed to overcome its drawbacks, which will affect significantly its pharmaceutical formulation. The goal of the current investigation was to design, optimize, and evaluate the anti-inflammatory performance of BRU ethosomal gel. Brucineethosomal formulations were prepared using thin film hydration method and optimized by central composite design approach using three independent variables (lecithin concentration, cholesterol concentration, and ethanol percentage) and three response variables (vesicular size, encapsulation efficiency, and skin permeation). The optimized formulation was examined for its stability and then incorporated into HPMC gel to get BRU ethosomal gel. The obtained BRU-loaded ethosomal gel was evaluated for its physical properties, in vitro release, and ex vivo permeation and skin irritation. Finally, carrageenan-induced rat hind paw edema test was adopted for the anti-inflammatory activity. The developed BRU ethosomal gel exhibited good physical characteristics comparable with the conventional developed BRU gel. In vitro release of BRU from ethosomal gel was effectively extended for 6 h. Permeation of BRU from ethosomes was significantly higher than all formulations (p < 0.05), since it recorded steady state transdermal flux value 0.548 ± 0.03 µg/cm2 h with enhancement ratio 2.73 ± 0.23. Eventually, BRU ethosomal gel exhibited potent anti-inflammatory activity as manifested by a significant decrease in rat hind paw inflammation following 24 h. In conclusion, the study emphasized the prospective of ethosomal gel as a fortunate carrier for intensifying the anti-inflammatory effect of Brucine.


Subject(s)
Skin Absorption , Skin , Administration, Cutaneous , Animals , Anti-Inflammatory Agents/metabolism , Lecithins/metabolism , Liposomes/metabolism , Prospective Studies , Rats , Skin/metabolism , Strychnine/analogs & derivatives
14.
Gels ; 7(4)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34842709

ABSTRACT

One of the recent advancements in research is the application of natural products in developing newly effective formulations that have few drawbacks and that boost therapeutic effects. The goal of the current exploration is to investigate the effect of jojoba oil in augmenting the anti-inflammatory effect of Brucine natural alkaloid. This is first development of a formulation that applies Brucine and jojoba oil int a PEGylated liposomal emulgel proposed for topical application. Initially, various PEGylated Brucine liposomal formulations were fabricated using a thin-film hydration method. (22) Factorial design was assembled using two factors (egg Phosphatidylcholine and cholesterol concentrations) and three responses (particle size, encapsulation efficiency and in vitro release). The optimized formula was incorporated within jojoba oil emulgel. The PEGylated liposomal emulgel was inspected for its characteristics, in vitro, ex vivo and anti-inflammatory behaviors. Liposomal emulgel showed a pH of 6.63, a spreadability of 48.8 mm and a viscosity of 9310 cP. As much as 40.57% of Brucine was released after 6 h, and drug permeability exhibited a flux of 0.47 µg/cm2·h. Lastly, % of inflammation was lowered to 47.7, which was significant effect compared to other formulations. In conclusion, the anti-inflammatory influence of jojoba oil and Brucine was confirmed, supporting their integration into liposomal emulgel as a potential nanocarrier.

15.
Chem Biol Interact ; 347: 109599, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34343525

ABSTRACT

BACKGROUND: Geraniol, a natural monoterpene, is a component of many plant essential oils. It contains many medicinal and pharmacological properties. Doxorubicin is an anticancer drug; however, its clinical usage is limited due to its cumulative and dose-dependent cardiotoxicity. This study investigates geraniol as a protective agent against doxorubicin-induced cardiotoxicity and explores possible underlying mechanisms of action. METHODS: Male Sprague-Dawley rats were allocated into five groups. Groups 1 and 2 were administered saline and geraniol 200 mg/kg/day/orally, respectively, for 15 days. Group 3 was administered intraperitoneal doxorubicin (5 mg/kg/IP on the 5th, 10th and 15th days to achieve a cumulative dose of 15 mg/kg) to induce cardiotoxicity. The fourth and fifth groups were treated with either geraniol 100 mg/kg or 200 mg/kg orally and doxorubicin to equal the doxorubicin dose administered to Group 3. RESULTS: Treatment with geraniol significantly ameliorated cardiac damage and restored serum cardiac injury marker levels in doxorubicin treated animals. Geraniol upregulated Nrf2 and HO-1 expression, elevated total antioxidant capacity, decreased the nuclear accumulation of kappa-light-chain enhancer of activated B cells (NF-κB), decreased the phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), suppressed tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin-18 (IL-18) levels, and restored the levels of Bax and caspase-3 and 9 in heart tissue. CONCLUSION: Geraniol may function as a potential activator of nuclear factor erythroid 2-related factor 2 (Nrf2), which subsequently improves Nrf2-dependent antioxidative signaling, diminishes apoptosis and subdues the inflammatory response. The downstream result is protection of the heart from doxorubicin-induced cardiotoxicity.


Subject(s)
Acyclic Monoterpenes , Cardiotonic Agents , Cardiotoxicity , Cymbopogon , Doxorubicin , Signal Transduction , Animals , Male , Acyclic Monoterpenes/therapeutic use , Cardiotonic Agents/therapeutic use , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Cymbopogon/chemistry , Doxorubicin/toxicity , Electrocardiography/drug effects , Heart Rate/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Mitochondria/drug effects , Myocardium/pathology , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism
16.
Molecules ; 26(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34279400

ABSTRACT

BACKGROUND: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of resistance of microbes to existing drugs creates the need for the development of new effective antimicrobial agents. In an attempt to improve the antibacterial activity of previously synthesized compounds modifications to their structures were performed. METHODS: Nineteen thiazolidinone derivatives with 6-Cl, 4-OMe, 6-CN, 6-adamantan, 4-Me, 6-adamantan substituents at benzothiazole ring were synthesized and evaluated against panel of four bacterial strains S. aureus, L. monocytogenes, E. coli and S. typhimirium and three resistant strains MRSA, E. coli and P. aeruginosa in order to improve activity of previously evaluated 6-OCF3-benzothiazole-based thiazolidinones. The evaluation of minimum inhibitory and minimum bactericidal concentration was determined by microdilution method. As reference compounds ampicillin and streptomycin were used. RESULTS: All compounds showed antibacterial activity with MIC in range of 0.12-0.75 mg/mL and MBC at 0.25->1.00 mg/mL The most active compound among all tested appeared to be compound 18, with MIC at 0.10 mg/mL and MBC at 0.12 mg/mL against P. aeruginosa. as well as against resistant strain P. aeruginosa with MIC at 0.06 mg/mL and MBC at 0.12 mg/mL almost equipotent with streptomycin and better than ampicillin. Docking studies predicted that the inhibition of LD-carboxypeptidase is probably the possible mechanism of antibacterial activity of tested compounds. CONCLUSION: The best improvement of antibacterial activity after modifications was achieved by replacement of 6-OCF3 substituent in benzothiazole moiety by 6-Cl against S. aureus, MRSA and resistant strain of E. coli by 2.5 folds, while against L. monocytogenes and S. typhimirium from 4 to 5 folds.


Subject(s)
Anti-Infective Agents/chemical synthesis , Protease Inhibitors/chemical synthesis , Thiazolidines/chemical synthesis , Anti-Infective Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carboxypeptidases/antagonists & inhibitors , Carboxypeptidases/chemistry , Carboxypeptidases/metabolism , Listeria monocytogenes/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Salmonella typhimurium/drug effects , Thiazolidines/pharmacology
17.
Molecules ; 26(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200144

ABSTRACT

Natural products have been extensively used for treating a wide variety of disorders. In recent times, Brucine (BRU) as one of the natural medications extracted from seeds of nux vomica, was investigated for its anticancer activity. As far as we know, this is the first study on BRU anticancer activity against skin cancer. Thus, the rational of this work was implemented to develop, optimize and characterize the anticancer activity of BRU loaded ethosomal gel. Basically, thin film hydration method was used to formulate BRU ethosomal preparations, by means of Central composite design (CCD), which were operated to construct (32) factorial design. Two independent variables were designated (phospholipid percentage and ethanol percentage) with three responses (vesicular size, encapsulation efficiency and flux). Based on the desirability function, one formula was selected and incorporated into HPMC gel base to develop BRU loaded ethosomal gel. The fabricated gel was assessed for all physical characterization. In-vitro release investigation, ex-vivo permeation and MTT calorimetric assay were performed. BRU loaded ethosomal gel exhibited acceptable values for the characterization parameters which stand proper for topical application. In-vitro release investigation was efficiently prolonged for 6 h. The flux from BRU loaded ethosome was enhanced screening optimum SSTF value. Finally, in-vitro cytotoxicity study proved that BRU loaded ethosomal gel significantly improved the anticancer activity of the drug against A375 human melanoma cell lines. Substantially, the investigation proposed a strong motivation for further study of the lately developed BRU loaded ethosomal gel as a prospective therapeutic strategy for melanoma treatment.


Subject(s)
Ethanol/chemistry , Gels/chemistry , Skin/drug effects , Strychnine/analogs & derivatives , Administration, Cutaneous , Animals , Gels/administration & dosage , Male , Phospholipids/chemistry , Rats , Rats, Wistar , Skin Absorption/drug effects , Skin Neoplasms/drug therapy , Strychnine/administration & dosage , Strychnine/chemistry
18.
Colloids Surf B Biointerfaces ; 205: 111868, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34034223

ABSTRACT

Brucine (BRU) is a natural product derived from nux-vomica seeds. It is commonly used as an anti-inflammatory and anti-nociceptive drug to relieve arthritis and traumatic pain. Nevertheless, its use is significantly limited by its low aqueous solubility, as well as the gastrointestinal problems and systemic toxicity that may occur following oral administration. The goal of this study, therefore, was to formulate and evaluate a nanoemulgel formulation of BRU for enhanced topical anti-inflammatory and anti-nociceptive activities. Different formulations were developed (BRU gel, emulgel and nanoemulgel) using 1% w/w NaCMC as a gelling agent. The formulated preparations were assessed for their physical appearance, spreadability, viscosity, particle size, in vitro drug release and ex vivo permeation studies. In addition, the carrageenan-induced rat hind paw edema method was adopted to scrutinize the anti-inflammatory activity, while the hot plate method and acetic acid-induced writhing test were used to assess the anti-nociceptive activity of different formulations in male BALB/c mice. The formulated BRU-loaded preparations showed good physical characteristics. Cumulative drug release from BRU-loaded nanoemulgel was remarkably higher than that of the other formulations. Ex vivo drug permeation of the nanoemulgel formulation across rat skin showed enhanced drug permeation and higher transdermal flux as compared to BRU-loaded gel or emulgel. Most importantly, the carrageenan-induced rat hind paw edema model verified the efficient anti-inflammatory potential of BRU-loaded nanoemulgel. In addition, BRU-loaded nanoemulgel exhibited significant protective effects against thermal stimulation in the hot plate test and remarkably inhibited acetic acid-induced abdominal writhing in mice. Furthermore, a skin irritation test indicated that BRU-loaded nanoemulgel elicited neither edema nor erythema upon application to rat skin. Collectively, our results suggest that myrrh oil-based nanoemulgel might represent a promising delivery vehicle for potentiating the anti-inflammatory and anti-nociceptive actions of brucine.


Subject(s)
Anti-Inflammatory Agents , Skin Absorption , Administration, Cutaneous , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Edema/chemically induced , Edema/drug therapy , Male , Mice , Mice, Inbred BALB C , Rats , Strychnine/analogs & derivatives
19.
Polymers (Basel) ; 13(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806659

ABSTRACT

Curcumin is a poorly water-soluble drug that is used for the treatment of inflammations, tumors, wound healing antioxidant and other diseases. In the current manuscript, it is successfully formulated into proniosome gels. The proniosomes are readily hydrated into niosomal formulations using warm water. Proniosomes were prepared using nonionic surfactants (tween 80, span 60) either solely or in combinations with cholesterol. The produced niosomal formulations were homogenous in size with vesicular sizes >343 and <1800 nm. The encapsulation efficiency percentage "EE%" of curcumin in niosomal formulations was different according to niosomal composition. It increased up to 99.74% in formulations of tween 80/Chol of 200 µmole/mL lipid concentration. Span 60/chol niosomes showed decreased curcumin EE%. Niosomal formulations showed increased SSTF and PC with enhancement ratios of more than 20-fold compared with curcumin suspension form. Kinetically, niosomes fitted to the Korsemeyer-Peppas model with non-Fickian transport according to their calculated n-values where curcumin suspension form showed Korsemeyer-Peppas kinetics with Fickian transport. Niosomal formulations deposited higher curcumin amounts in the skin compared with the suspension form. The best niosomal formulation (F9) was used for niosomal gel and emulgel fabrication. Finally, the anti-inflammatory activity of curcumin in various formulations was evaluated using a rat hind paw edema method and the % of swelling was 17.5% following 24 h in group treated with curcumin niosomal emulgel. In conclusion, this study suggests that the developed niosomal emulgel could significantly enhance the anti-inflammatory effect of curcumin and be an efficient carrier for the transdermal delivery of the drug.

20.
Antibiotics (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802949

ABSTRACT

In this study, we report the design, synthesis, computational and experimental evaluation of the antimicrobial activity, as well as docking studies of new 5-methylthiazole based thiazolidinones. All compounds demonstrated antibacterial efficacy, some of which (1, 4, 10 and 13) exhibited good activity against E. coli and B. cereus. The evaluation of antibacterial activity against three resistant strains, MRSA, P. aeruginosa and E. coli, revealed that compound 12 showed the best activity, higher than reference drugs ampicillin and streptomycin, which were inactive or exhibited only bacteriostatic activity against MRSA, respectively. Ten out of fifteen compounds demonstrated higher potency than reference drugs against a resistant strain of E. coli, which appeared to be the most sensitive species to our compounds. Compounds 8, 13 and 14 applied in a concentration equal to MIC reduced P. aeruginosa biofilm formation by more than 50%. All compounds displayed antifungal activity, with compound 10 being the most active. The majority of compounds showed better activity than ketoconazole against almost all fungal strains. In order to elucidate the mechanism of antibacterial and antifungal activities, molecular docking studies on E. coli Mur B and C. albicans CYP51 and dihydrofolate reductase were performed. Docking analysis of E. coli MurB indicated a probable involvement of MurB inhibition in the antibacterial mechanism of tested compounds while docking to 14α-lanosterol demethylase (CYP51) and tetrahydrofolate reductase of Candida albicans suggested that probable involvement of inhibition of CYP51 reductase in the antifungal activity of the compounds. Potential toxicity toward human cells is also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...