Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233102

ABSTRACT

Computational chemistry, molecular docking, and drug design approaches, combined with the biochemical evaluation of the antitumor activity of selected derivatives of the thiouracil-based dihydroindeno pyrido pyrimidines against topoisomerase I and II. The IC50 of other cell lines including the normal human lung cell line W138, lung cancer cell line, A549, breast cancer cell line, MCF-7, cervical cancer, HeLa, and liver cancer cell line HepG2 was evaluated using biochemical methods. The global reactivity descriptors and physicochemical parameters were computed, showing good agreement with the Lipinski and Veber's rules of the drug criteria. The molecular docking study of the ligands with the topoisomerase protein provides the binding sites, binding energies, and deactivation constant for the inhibition pocket. Various biochemical methods were used to evaluate the IC50 of the cell lines. The QSAR model was developed for colorectal cell line HCT as a case study. Four QSAR statistical models were predicted between the IC50 of the colorectal cell line HCT to correlate the anticancer activity and the computed physicochemical and quantum chemical global reactivity descriptors. The predictive power of the models indicates a good correlation between the observed and the predicted activity.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Pyrimidines/pharmacology , Quantitative Structure-Activity Relationship , Structure-Activity Relationship , Thiouracil/pharmacology
2.
Int J Mol Sci ; 21(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32070048

ABSTRACT

In this work, three computational methods (Hatree-Fock (HF), Møller-Plesset 2 (MP2), and Density Functional Theory (DFT)) using a variety of basis sets are used to determine the atomic and molecular properties of dihydrothiouracil-based indenopyridopyrimidine (TUDHIPP) derivatives. Reactivity descriptors of this system, including chemical potential (µ), chemical hardness (η), electrophilicity (ω), condensed Fukui function and dual descriptors are calculated at B3LYP/6-311++ G (d,p) to identify reactivity changes of these molecules in both gas and aqueous phases. We determined the molecular electrostatic surface potential (MESP) to determine the most active site in these molecules. Molecular docking study of TUDHIPP with topoisomerase II α and ß is performed, predicting binding sites and binding energies with amino acids of both proteins. Docking studies of TUDHIPP versus etoposide suggest their potential as antitumor candidates. We have applied Lipinski, Veber's rules and analysis of the Golden triangle and structure activity/property relationship for a series of TUDHIPP derivatives indicate that the proposed compounds exhibit good oral bioavailability. The comparison of the drug likeness descriptors of TUDHIPP with those of etoposide, which is known to be an antitumor drug, indicates that TUDHIPP can be considered as an antitumor drug. The overall study indicates that TUDHIPP has comparable and even better descriptors than etoposide proposing that it can be as effective antitumor drug, especially 2H, 6H and 7H compounds.


Subject(s)
DNA Topoisomerases, Type II/chemistry , Pyrimidines/chemistry , Topoisomerase II Inhibitors/chemistry , Uracil/chemistry , Binding Sites , Catalytic Domain/drug effects , Density Functional Theory , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Uracil/analogs & derivatives
3.
Article in English | MEDLINE | ID: mdl-25754524

ABSTRACT

Ground state properties of 2,4-diphenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine, compound 1, and its derivatives are investigated experimentally and theoretically in Dioxane and DMF. The calculations show that all the studied compounds (1-7) are non-planar, resulting in a significant impact on the electronic and structural properties. The ground state properties of compounds 1-7 at B3LYP/6-311G (d, p) show that compound 5 has the lowest EHOMO, ELUMO, and ΔE indicating highest reactivity. Compound 7 is found to have the highest polarity. The observed UV spectra in Dioxane and DMF of compounds 1-4 show 2 bands, while compounds 5-7 show 4 bands in both solvents. Band maxima (λmax) and intensities of the spectra are found to have solvent dependence reflected as blue and red shifts. The theoretical spectra computed at TD-B3LYP/6-311G (d, p) in gas phase, Dioxane and DMF indicate a good agreement with the observed spectra.


Subject(s)
Benzimidazoles/chemistry , Electrons , Models, Molecular , Pyrimidines/chemistry , Quantum Theory , Molecular Conformation , Spectrophotometry, Ultraviolet , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...