Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(1): 168-181, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38109842

ABSTRACT

Reconstruction of critical sized bone defects in the oral and maxillofacial region continues to be clinically challenging despite the significant development of osteo-regenerative materials. Among 3D biomaterials, hydrogels and hydrogel composites have been explored for bone regeneration, however, their inferior clinical performance in comparison to autografts is mainly attributed to variable rates of degradation and lack of vascularization. In this study, we report hydrogel composite magnetic scaffolds formed from calcium carbonate, poly(vinyl alcohol) (PVA), and magnetic nanoparticles (MNPs), using PVA as matrix and calcium carbonate particles in vaterite phase as filler, to enhance the cross-linking of matrix and porosity with MNPs that can target and regulate cell signaling pathways to control cell behavior and improve the osteogenic and angiogenic potential. The physical and mechanical properties were evaluated, and cytocompatibility was investigated by culturing human osteoblast-like cells onto the scaffolds. The vaterite phase due to its higher solubility in comparison to calcium phosphates, combined with the freezing-thawing process of PVA, yielded porous scaffolds that exhibited adequate thermal stability, favorable water-absorbing capacity, excellent mineralization ability, and cytocompatibility. An increasing concentration from 1, 3, and 6 wt % MNPs in the scaffolds showed a statistically significant increase in compressive strength and modulus of the dry specimens that exhibited brittle fracture. However, the hydrated specimens were compressible and showed a slight decrease in compressive strength with 6% MNPs, although this value was higher compared to that of the scaffolds with no MNPs.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Hydrogels , Calcium Carbonate , Magnetic Phenomena
2.
Front Bioeng Biotechnol ; 10: 836386, 2022.
Article in English | MEDLINE | ID: mdl-35832405

ABSTRACT

Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds. Three test samples including a) uncoated nylon scaffolds (referred to as "Uncoated"), b) ELR coated scaffolds (referred to as "ELR only"), and c) ELR coated and in vitro mineralized scaffolds (referred to as "Pre-mineralized") were prepared and tested for in vitro and in vivo performance. All test samples supported normal human immortalized mesenchymal stem cell adhesion, growth, and differentiation with enhanced cell proliferation observed in the "Pre-mineralized" samples. Using a rabbit calvarial in vivo model, 'Pre-mineralized' scaffolds also exhibited higher bone ingrowth into scaffold pores and cavities with higher tissue-implant integration. However, the coated scaffolds ("ELR only" and "Pre-mineralized") did not exhibit significantly more new bone formation compared to "Uncoated" scaffolds. Overall, the mineralizing coating offers an opportunity to enhance integration of 3D printed bone implants. However, there is a need to further decipher and tune their immunologic response to develop truly osteoinductive/conductive surfaces.

3.
ACS Nano ; 15(7): 11202-11217, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34180656

ABSTRACT

Synthetic nanostructured materials incorporating both organic and inorganic components offer a unique, powerful, and versatile class of materials for widespread applications due to the distinct, yet complementary, nature of the intrinsic properties of the different constituents. We report a supramolecular system based on synthetic nanoclay (Laponite, Lap) and peptide amphiphiles (PAs, PAH3) rationally designed to coassemble into nanostructured hydrogels with high structural integrity and a spectrum of bioactivities. Spectroscopic and scattering techniques and molecular dynamic simulation approaches were harnessed to confirm that PAH3 nanofibers electrostatically adsorbed and conformed to the surface of Lap nanodisks. Electron and atomic force microscopies also confirmed an increase in diameter and surface area of PAH3 nanofibers after coassembly with Lap. Dynamic oscillatory rheology revealed that the coassembled PAH3-Lap hydrogels displayed high stiffness and robust self-healing behavior while gas adsorption analysis confirmed a hierarchical and heterogeneous porosity. Furthermore, this distinctive structure within the three-dimensional (3D) matrix provided spatial confinement for the nucleation and hierarchical organization of high-aspect ratio hydroxyapatite nanorods into well-defined spherical clusters within the 3D matrix. Applicability of the organic-inorganic PAH3-Lap hydrogels was assessed in vitro using human bone marrow-derived stromal cells (hBMSCs) and ex vivo using a chick chorioallantoic membrane (CAM) assay. The results demonstrated that the organic-inorganic PAH3-Lap hydrogels promote human skeletal cell proliferation and, upon mineralization, integrate with the CAM, are infiltrated by blood vessels, stimulate extracellular matrix production, and facilitate extensive mineral deposition relative to the controls.


Subject(s)
Mesenchymal Stem Cells , Nanofibers , Humans , Hydrogels/chemistry , Durapatite/chemistry , Nanofibers/chemistry , Rheology
4.
J Dent ; 112: 103738, 2021 09.
Article in English | MEDLINE | ID: mdl-34182060

ABSTRACT

OBJECTIVES: Our ability to detect dental wear on sequential scans is improving. This experiment aimed to determine if widely used surface registration methods were sufficiently accurate to distinguish differences between intervention groups on early wear lesions. METHODS: Baseline measurements were taken on human molar buccal enamel samples (n = 96) with a confocal scanning profilometer (Taicaan, UK). Samples were randomly assigned to subgroups of brushing (30 linear strokes 300 g force) before or after an acid challenge (10 min citric acid 0.3% immersion) for four test dentifrices (medium abrasivity NaF, medium abrasivity SnF2, low abrasivity NaF and a water control). Post-experimental profilometry was repeated. 3D step height was analysed using WearCompare (www.leedsdigitaldentistry.co.uk/wearcompare, UK). Percentage Sa change was calculated using Boddies (Taicaan Technologies, Southampton, UK). Data were analysed in SPSS (IBM, USA). RESULTS: The mean 3D step height (SD) observed when samples were brushed before the erosive challenge was -2.33 µm (3.46) and after was -3.5 µm (5.6). No significant differences were observed between timing of toothbrushing or dentifrice used. The mean % Sa change for the low abrasivity group (water control and low abrasivity NaF) was -10.7% (16.8%) and +28.0% (42.0%) for the medium abrasivity group (medium abrasivity NaF and SnF2). CONCLUSIONS: Detectable wear scars were observed at early stages of wear progression. However standard deviations were high and the experiment was underpowered to detect significant changes. Brushing with a low abrasivity dentifrice or water control produced a smoother surface whereas brushing with a high abrasivity dentifrice produced a rougher surface. CLINICAL SIGNIFICANCE: The methodology currently used to align sequential scans of teeth and measure change is too imprecise to measure early wear on natural enamel surfaces unless a large sample size is used. Further improvements are required before we can fully assess early wear processes on natural teeth using profilometry.


Subject(s)
Dentifrices , Tooth Abrasion , Tooth Erosion , Dental Enamel , Dentifrices/adverse effects , Humans , Toothbrushing
5.
ACS Appl Mater Interfaces ; 13(22): 25694-25700, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34048220

ABSTRACT

Containing the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented challenge due to high horizontal transmissivity and asymptomatic carriage rates. Lateral flow device (LFD) immunoassays were introduced in late 2020 to detect SARS-CoV-2 infection in asymptomatic or presymptomatic individuals rapidly. While LFD technologies have been used for over 60 years, their widespread use as a public health tool during a pandemic is unprecedented. By the end of 2020, data from studies into the efficacy of the LFDs emerged and showed these point-of-care devices to have very high specificity (ability to identify true negatives) but inadequate sensitivity with high false-negative rates. The low sensitivity (<50%) shown in several studies is a critical public health concern, as asymptomatic or presymptomatic carriers may wrongly be assumed to be noninfectious, posing a significant risk of further spread in the community. Here, we show that the direct visual readout of SARS-CoV-2 LFDs is an inadequate approach to discriminate a potentially infective viral concentration in a biosample. We quantified significant immobilized antigen-antibody-labeled conjugate complexes within the LFDs visually scored as negative using high-sensitivity synchrotron X-ray fluorescence imaging. Correlating quantitative X-ray fluorescence measurements and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) determined numbers of viral copies, we identified that negatively scored samples could contain up to 100 PFU (equivalent here to ∼10 000 RNA copies/test). The study demonstrates where the shortcomings arise in many of the current direct-readout SARS-CoV-2 LFDs, namely, being a deficiency in the readout as opposed to the potential level of detection of the test, which is orders of magnitude higher. The present findings are of importance both to public health monitoring during the Coronavirus Disease 2019 (COVID-19) pandemic and to the rapid refinement of these tools for immediate and future applications.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Immunoassay/instrumentation , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Animals , Chlorocebus aethiops , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction , Reference Standards , Severe acute respiratory syndrome-related coronavirus/ultrastructure , Sensitivity and Specificity , Spectrometry, X-Ray Emission , Vero Cells
6.
Evid Based Dent ; 19(3): 82-83, 2018 10.
Article in English | MEDLINE | ID: mdl-30361658

ABSTRACT

Data sourcesThe databases searched were the Cochrane Library, PubMed/Medline, Embase, ISI Web of Knowledge, Scopus and SIGLE OpenGrey. Databases were searched with no restriction on year of publication or language.Study selectionRandomised controlled clinical trials (RCTs), prospective and retrospective studies, case-control studies and case series studies in humans were included. The test group received implants with the local delivery of bisphosphonates, controls received implants only. Studies involving patients with metabolic bone diseases or undergoing systemic medications for bone bio-modulation or immunosuppression or with relevant pathologies were excluded.Data extraction and synthesisThree authors independently selected studies with disagreements being resolved by discussion. Study quality was assessed by two reviewers using the Newcastle-Ottawa scale (NOS).ResultsThree articles published between 2010 and 2013 met the selection criteria. Sample size ranged from five to 39. Mean age was 52.6 to 66. Efficacy was assessed using radiographic analysis, implant stability quotient (ISQ) and histological assessment. Despite methodological differences, all articles reported positive results for osseointegration when a local bisphosphonate was used, either on the implant surface or direct application of a pharmacologically active compound at the surgical site or in the form of a gel directly at the surgical site. Greater implant stability, better implant survival rates and reduced peri-implant bone loss were recorded in the test groups compared with controls. As well as formation of lamellar bone trabeculae in intimate contact with the implants.ConclusionsThe local use of a bisphosphonate appears to favour the osseointegration of titanium implants in humans.


Subject(s)
Dental Implants , Dental Implantation, Endosseous , Diphosphonates , Humans , Osseointegration , Prospective Studies , Retrospective Studies , Titanium
7.
Adv Healthc Mater ; 7(18): e1800178, 2018 09.
Article in English | MEDLINE | ID: mdl-29943412

ABSTRACT

Biomineralization is a highly dynamic, yet controlled, process that many living creatures employ to develop functional tissues such as tooth enamel, bone, and others. A major goal in materials science is to create bioinspired functional structures based on the precise organization of building blocks across multiple length scales. Therefore, learning how nature has evolved to use biomineralization could inspire new ways to design and develop synthetic hierarchical materials with enhanced functionality. Toward this goal, this review dissects the current understanding of structure-function relationships of dental enamel and bone using a materials science perspective and discusses a wide range of synthetic technologies that aim to recreate their hierarchical organization and functionality. Insights into how these strategies could be applied for regenerative medicine and dentistry are also provided.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Dentistry/methods , Regenerative Medicine/methods , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomineralization
8.
Nat Commun ; 9(1): 2145, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29858566

ABSTRACT

A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder-order interplay using elastin-like recombinamers to program organic-inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology.


Subject(s)
Calcification, Physiologic , Dentin/metabolism , Elastin/metabolism , Intrinsically Disordered Proteins/metabolism , Minerals/metabolism , Amino Acid Sequence , Dental Enamel/chemistry , Dentin/chemistry , Dentin/ultrastructure , Elastin/chemistry , Elastin/ultrastructure , Humans , Hydroxyapatites/chemistry , Hydroxyapatites/metabolism , Intrinsically Disordered Proteins/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Minerals/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
Acta Biomater ; 58: 80-89, 2017 08.
Article in English | MEDLINE | ID: mdl-28528863

ABSTRACT

The ability to guide molecular self-assembly at the nanoscale into complex macroscopic structures could enable the development of functional synthetic materials that exhibit properties of natural tissues such as hierarchy, adaptability, and self-healing. However, the stability and structural integrity of these kinds of materials remains a challenge for many practical applications. We have recently developed a dynamic biopolymer-peptide co-assembly system with the capacity to grow and undergo morphogenesis into complex shapes. Here we explored the potential of different synthetic (succinimidyl carboxymethyl ester, poly (ethylene glycol) ether tetrasuccinimidyl glutarate and glutaraldehyde) and natural (genipin) cross-linking agents to stabilize membranes made from these biopolymer-peptide co-assemblies. We investigated the cross-linking efficiency, resistance to enzymatic degradation, and mechanical properties of the different cross-linked membranes. We also compared their biocompatibility by assessing the metabolic activity and morphology of adipose-derived stem cells (ADSC) cultured on the different membranes. While all cross-linkers successfully stabilized the system under physiological conditions, membranes cross-linked with genipin exhibited better resistance in physiological environments, improved stability under enzymatic degradation, and a higher degree of in vitro cytocompatibility compared to the other cross-linking agents. The results demonstrated that genipin is an attractive candidate to provide functional structural stability to complex self-assembling structures for potential tissue engineering or in vitro model applications. STATEMENT OF SIGNIFICANCE: Molecular self-assembly is widely used for the fabrication of complex functional biomaterials to replace and/or repair any tissue or organ in the body. However, maintaining the stability and corresponding functionality of these kinds of materials in physiological conditions remains a challenge. Chemical cross-linking strategies (natural or synthetic) have been used in an effort to improve their structural integrity. Here we investigate key performance parameters of different cross-linking strategies for stabilising self-assembled materials with potential biomedical applications using a novel protein-peptide co-assembling membrane as proof-of-concept. From the different cross-linkers tested, the natural cross-linker genipin exhibited the best performance. This cross-linker successfully enhanced the mechanical properties of the system enabling the maintenance of the structure in physiological conditions without compromising its bioactivity and biocompatibility. Altogether, we provide a systematic characterization of cross-linking alternatives for self-assembling materials focused on biocompatibility and stability and demonstrate that genipin is a promising alternative for the cross-linking of such materials with a wide variety of potential applications such as in tissue engineering and drug delivery.


Subject(s)
Adipose Tissue/chemistry , Adipose Tissue/metabolism , Cross-Linking Reagents/chemistry , Iridoids , Peptides , Stem Cells/chemistry , Stem Cells/metabolism , Adipose Tissue/cytology , Cell Line , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Iridoids/chemistry , Iridoids/pharmacology , Peptides/chemistry , Peptides/pharmacology , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...