Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 172: 113144, 2023 10.
Article in English | MEDLINE | ID: mdl-37689907

ABSTRACT

The microbial ecosystem of fermented food is greatly disturbed by human activities.Jiuyao is important saccharification starter for brewing huangjiu. The interaction between environmental factors and microorganisms significantly affected the microbial community structure at different stages of Jiuyao manufacturing. This study combined environmental factor analysis and high-throughput sequencing technology to comprehensively analyze the specific changes of microbial community and environmental factors in each fermentation stage of Jiuyao production and their correlation. The results showed that the activities of liquefaction enzyme, glycosylation enzyme and acid protease reached the highest value on the 8 th day (192 h) after the beginning of fermentation, and the cellulase activity reached the highest value at the end of fermentation. Pediococcus(37.5 %-58.2 %), Weissella(9.2 %-27.0 %) and Pelomonas(0.1 %-12.1 %) were the main microbial genera in the genus bacteria, and Saccharomycopsis(37.1 %-52.0 %), Rhizopus(12.5 %-31.0 %) and Saccharomyces(4.0 %-20.5 %) were the main microbial genera in the genus fungi. The results of correlation analysis showed that the microbial communities in Jiuyao were closely related to environmental factors. Most microbial communities were positively correlated with temperature, but negatively correlated with ambient humidity, CO2 concentration, acidity and water content of Jiuyao. In addition, the transcription levels of enzymes related to microbial glucose metabolism in Jiuyao were higher in the late stage of Jiuyao fermentation. Interestingly, these enzymes had high transcription levels in fungi such as Saccharomycopsis, Rhizopus and Saccharomyces, as well as in bacteria such as Pediococcus and Lactobacillus. This study provides a reference for revealing the succession rule of microbial community structure caused by environmental factors during the preparation of Jiuyao in Shaoxing Huangjiu.


Subject(s)
Microbiota , Wine , Endopeptidases
2.
Plants (Basel) ; 11(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36079613

ABSTRACT

Strain TSO9 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum) located in the Yaqui, Valley, Mexico. Here, the genome of this strain was sequenced, obtaining a total of 5,248,515 bp; 38.0% G + C content; 1,186,514 bp N50; and 2 L50. Based on the 16S rRNA gene sequencing, strain TSO9 was affiliated with the genus Priestia. The genome annotation of Priestia sp. TSO9 contains a total of 147 RNAs, 128 tRNAs, 1 tmRNA, and 5512 coding DNA sequences (CDS) distributed into 332 subsystems, where CDS associated with agricultural purposes were identified, such as (i) virulence, disease, and defense (57 CDS) (i.e., resistance to antibiotics and toxic compounds (34 CDS), invasion and intracellular resistance (12 CDS), and bacteriocins and ribosomally synthesized antibacterial peptides (10 CDS)), (ii) iron acquisition and metabolism (36 CDS), and (iii) secondary metabolism (4 CDS), i.e., auxin biosynthesis. In addition, subsystems related to the viability of an active ingredient for agricultural bioproducts were identified, such as (i) stress response (65 CDS). These genomic traits are correlated with the metabolic background of this strain, and its positive effects on wheat growth regulation reported in this work. Thus, further investigations of Priestia sp. TSO9 are necessary to complement findings regarding its application in agroecosystems to increase wheat yield sustainably.

3.
Plants (Basel) ; 11(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35336624

ABSTRACT

Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed 'Williams' banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L-1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant's total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase 'SOD', catalase 'CAT', and peroxidase 'POD') and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L-1 can promote the growth, productivity and fruit quality of drought-stressed banana plants.

4.
Food Sci Nutr ; 9(11): 6006-6019, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34760233

ABSTRACT

In order to improve the high cost of equipment and difficult management caused by the natural aging of Chinese rice wine (Huangjiu), micro-oxygen (MO) and electric field (PEF) technology are used to accelerate the aging of Huangjiu. The results showed that micro-oxygen and electric field have a significant effect on the sensory characteristics and flavor characteristics of Huangjiu. Compared with the naturally aged Huangjiu, the flavor compounds of Huangjiu treated with micro-oxygen and electric field increase significantly. Based on principal component analysis, Huangjiu processed at 0.35 mg L/day or 0.5 mg L/day combined electric field exhibited similar flavor to the natural aged Huangjiu, which was highly associated with long-chain fatty acid ethyl esters (C13-C18). Moreover, partial least squares regression demonstrated that sensory attributes of cereal aroma and astringency were highlighted after aging time, while fruit aroma, continuation, and full body were dominant after micro-oxygen and electric field treatment. Micro-oxygen and electric field effectively enhanced the quality of Huangjiu, which could be applied in other alcoholic beverages.

5.
New Phytol ; 232(6): 2267-2282, 2021 12.
Article in English | MEDLINE | ID: mdl-34610157

ABSTRACT

Chilling restrains the distribution of mangroves. We tested whether foliar phosphorus (P) fractions and gene expression are associated with cold tolerance in mangrove species. We exposed seedlings of six mangrove populations from different latitudes to favorable, chilling and recovery treatments, and measured their foliar P concentrations and fractions, photochemistry, nighttime respiration, and gene expression. A Kandelia obovata (KO; 26.45°N) population completely and a Bruguiera gymnorhiza (Guangxi) (BGG; 21.50°N) population partially (30%) survived chilling. Avicennia marina (24.29°N), and other B. gymnorhiza (26.66°N, 24.40°N, and 19.62°N) populations died after chilling. Photosystems of KO and photosystem I of BGG were least injured. During chilling, leaf P fractions, except nucleic acid P in three populations, declined and photoinhibition and nighttime respiration increased in all populations, with the greatest impact in B. gymnorhiza. Leaf nucleic acid P was positively correlated with photochemical efficiency during recovery and nighttime respiration across populations for each treatment. Relatively high concentrations of nucleic acid P and metabolite P were associated with stronger chilling tolerance in KO. Bruguiera gymnorhiza exhibited relatively low concentrations of organic P in favorable and chilling conditions, but its partially survived population showed stronger compensation in nucleic acid P and Pi concentrations and gene expression during recovery.


Subject(s)
Avicennia , Rhizophoraceae , China , Cold Temperature , Phosphorus , Photosynthesis , Plant Leaves
6.
Plant Physiol Biochem ; 149: 50-60, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32035252

ABSTRACT

Chilling is one of the main abiotic stresses that adversely affect the productivity of sugarcane, in marginal tropical regions where chilling incidence occurs with seasonal changes. However, nanoparticles (NPs) have been tested as a mitigation strategy against diverse abiotic stresses. In this study, NPs such as silicon dioxide (nSiO2; 5-15 nm), zinc oxide (nZnO; <100 nm), selenium (nSe; 100 mesh), graphene (graphene nanoribbons [GNRs] alkyl functionalized; 2-15 µm × 40-250 nm) were applied as foliar sprays on sugarcane leaves to understand the amelioration effect of NPs against negative impact of chilling stress on photosynthesis and photoprotection. To this end, seedlings of moderately chilling tolerant sugarcane variety Guitang 49 was used for current study and spilt plot was used as statistical design. The changes in the level chilling tolerance after the application of NPs on Guitang 49 were compared with tolerance level of chilling tolerant variety Guitang 28. NPs treatments reduced the adverse effects of chilling by maintaining the maximum photochemical efficiency of PSII (Fv/Fm), maximum photo-oxidizable PSI (Pm), and photosynthetic gas exchange. Furthermore, application of NPs increased the content of light harvesting pigments (chlorophylls and cartinoids) in NPs treated seedlings. Higher carotenoid accumulation in leaves of NPs treated seedlings enhanced the nonphotochemical quenching (NPQ) of PSII. Among the NPs, nSiO2 showed higher amelioration effects and it can be used alone or in combination with other NPs to mitigate chilling stress in sugarcane.


Subject(s)
Cold Temperature , Nanoparticles , Saccharum , Silicon Dioxide , Stress, Physiological , Chlorophyll/metabolism , Nanoparticles/chemistry , Photosynthesis/drug effects , Plant Leaves/drug effects , Saccharum/drug effects , Seedlings/drug effects , Silicon Dioxide/pharmacology , Stress, Physiological/drug effects
7.
Photosynth Res ; 122(2): 121-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25119687

ABSTRACT

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.


Subject(s)
Chlorophyll/chemistry , Fluorescence , Photosynthesis/physiology , Chlorophyll/metabolism , Chlorophyll A , Light
8.
Int J Mol Sci ; 14(7): 12994-3004, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23797660

ABSTRACT

Plant mitochondrial NAD-malic enzyme (NAD-ME), which is composed of α- and ß-subunits in many species, participates in many plant biosynthetic pathways and in plant respiratory metabolism. However, little is known about the properties of woody plant NAD-MEs. In this study, we analyzed four NAD-ME genes (PtNAD-ME1 through PtNAD-ME4) in the genome of Populus trichocarpa. PtNAD-ME1 and -2 encode putative α-subunits, while PtNAD-ME3 and -4 encode putative ß-subunits. The Populus NAD-MEs were expressed in Escherichia coli cells as GST-tagged fusion proteins. Each recombinant GST-PtNAD-ME protein was purified to near homogeneity by glutathione-Sepharose 4B affinity chromatography. Milligram quantities of each native protein were obtained from 1 L bacterial cultures after cleavage of the GST tag. Analysis of the enzymatic properties of these proteins in vitro indicated that α-NAD-MEs are more active than ß-NAD-MEs and that α- and ß-NAD-MEs presented different kinetic properties (Vmax, kcat and kcat/Km). The effect of different amounts of metabolites on the activities of Populus α- and ß-NAD-MEs was assessed in vitro. While none of the metabolites evaluated in our assays activated Populus NAD-ME, oxalacetate and citrate inhibited all α- and ß-NAD-MEs and glucose-6-P and fructose inhibited only the α-NAD-MEs.


Subject(s)
NAD , Populus , Escherichia coli/metabolism , Kinetics , NAD/metabolism , Populus/metabolism , Recombinant Proteins/genetics
9.
Plant Sci ; 181(6): 632-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21958704

ABSTRACT

Plant small heat shock proteins (sHSPs) are known to be important for environmental stress tolerance and involved in various developmental processes. In this study, two full-length cDNAs encoding sHSPs, designated JcHSP-1 and JcHSP-2, were identified and characterized from developing seeds of a promising biodiesel feedstock plant Jatropha curcas by expressed sequence tag (EST) sequencing of embryo cDNA libraries and rapid amplification of cDNA ends (RACE). JcHSP-1 and JcHSP-2 contained open-reading frames encoding sHSPs of 219 and 157 amino acids, with predicted molecular weights of 24.42kDa and 18.02kDa, respectively. Sequence alignment indicated that both JcHSP-1 and JcHSP-2 shared high similarity with other plant sHSPs. Real-time quantitative RT-PCR analysis showed that the transcriptional level of both JcHSP-1 and JcHSP-2 increased along with natural dehydration process during seed development. A sharp increase of JcHSP-2 transcripts occurred in response to water content dropping from 42% in mature seeds to 12% in dry seeds. Western blot analysis revealed that the accumulation profile of two cross-reacting proteins, whose molecular weight corresponding to the calculated size of JcHSP-1 and JcHSP-2, respectively, was well consistent with the mRNA expression pattern of JcHSP-1 and JcHSP-2 in jatropha seeds during maturation and natural dehydration. These results indicated that both JcHSPs might play an important role in cell protection and seed development during maturation of J. curcas seeds.


Subject(s)
Heat-Shock Proteins, Small/genetics , Jatropha/genetics , Plant Proteins/genetics , Seeds/chemistry , Amino Acid Sequence , Biofuels , Blotting, Western , DNA, Complementary/isolation & purification , Dehydration/metabolism , Expressed Sequence Tags , Heat-Shock Proteins, Small/metabolism , Jatropha/chemistry , Jatropha/metabolism , Molecular Sequence Data , Nucleic Acid Amplification Techniques , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Seeds/growth & development , Seeds/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...