Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters










Publication year range
1.
Protein Sci ; 28(9): 1676-1689, 2019 09.
Article in English | MEDLINE | ID: mdl-31306512

ABSTRACT

Free-standing single-layer ß-sheets are extremely rare in naturally occurring proteins, even though ß-sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single-layer, anti-parallel ß-sheet proteins, comprised of three or four twisted ß-hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of ß-sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent-exposed tyrosine residues, was identified on the concave surface of the ß-sheet. These new modular single-layer ß-sheet proteins may serve as a new model system for studying folding and design of ß-rich proteins.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/chemistry , Bacteria/chemistry , Crystallography, X-Ray , Gastrointestinal Microbiome , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Conformation, beta-Strand , Protein Folding , Tyrosine/chemistry
2.
Acta Crystallogr D Struct Biol ; 72(Pt 11): 1181-1193, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27841751

ABSTRACT

The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics projects.


Subject(s)
Crystallography, X-Ray , Databases, Protein , Proteins/chemistry , Crystallography, X-Ray/methods , Internet , Models, Molecular , Protein Conformation , Software
3.
Structure ; 24(8): 1372-1379, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27396829

ABSTRACT

The Gastrulation Brain Homeobox 1 (Gbx1) gene encodes the Gbx1 homeodomain that targets TAATTA motifs in double-stranded DNA (dsDNA). Residues Glu17 and Arg52 in Gbx1 form a salt bridge, which is preserved in crystal structures and molecular dynamics simulations of homologous homeodomain-DNA complexes. In contrast, our nuclear magnetic resonance (NMR) studies show that DNA binding to Gbx1 induces dynamic local polymorphisms, which include breaking of the Glu17-Arg52 salt bridge. To study this interaction, we produced a variant with Glu17Arg and Arg52Glu mutations, which exhibited the same fold as the wild-type protein, but a 2-fold reduction in affinity for dsDNA. Analysis of the NMR structures of the Gbx1 homeodomain in the free form, the Gbx1[E17R,R52E] variant, and a Gbx1 homeodomain-DNA complex showed that stabilizing interactions of the Arg52 side chain with the DNA backbone are facilitated by transient breakage of the Glu17-Arg52 salt bridge in the DNA-bound Gbx1.


Subject(s)
Amino Acid Substitution , DNA/chemistry , Homeodomain Proteins/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , DNA/genetics , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Thermodynamics
4.
Cell ; 165(3): 690-703, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27062925

ABSTRACT

Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism of assembly were unknown. Crystal structures and biochemical data revealed a diverse protein superfamily with a common Greek-key ß sandwich fold with two transthyretin-like repeats that polymerize into a pilus through a strand-exchange mechanism. The assembly mechanism of the central, structural pilins involves proteinase-assisted removal of their N-terminal ß strand, creating an extended hydrophobic groove that binds the C-terminal donor strands of the incoming pilin. Accessory pilins at the tip and base have unique structural features specific to their location, allowing initiation or termination of the assembly. The Bacteroidia pilus, therefore, has a biogenesis mechanism that is distinct from other known pili and likely represents a different type of bacterial pilus.


Subject(s)
Fimbriae Proteins/chemistry , Fimbriae, Bacterial , Gastrointestinal Microbiome , Amino Acid Sequence , Crystallography, X-Ray , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Humans , Lipoproteins/chemistry , Lipoproteins/metabolism , Models, Molecular , Molecular Sequence Data , Sequence Alignment
5.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 497-511, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27050129

ABSTRACT

RNA-binding protein 39 (RBM39) is a splicing factor and a transcriptional co-activator of estrogen receptors and Jun/AP-1, and its function has been associated with malignant progression in a number of cancers. The C-terminal RRM domain of RBM39 belongs to the U2AF homology motif family (UHM), which mediate protein-protein interactions through a short tryptophan-containing peptide known as the UHM-ligand motif (ULM). Here, crystal and solution NMR structures of the RBM39-UHM domain, and the crystal structure of its complex with U2AF65-ULM, are reported. The RBM39-U2AF65 interaction was confirmed by co-immunoprecipitation from human cell extracts, by isothermal titration calorimetry and by NMR chemical shift perturbation experiments with the purified proteins. When compared with related complexes, such as U2AF35-U2AF65 and RBM39-SF3b155, the RBM39-UHM-U2AF65-ULM complex reveals both common and discriminating recognition elements in the UHM-ULM binding interface, providing a rationale for the known specificity of UHM-ULM interactions. This study therefore establishes a structural basis for specific UHM-ULM interactions by splicing factors such as U2AF35, U2AF65, RBM39 and SF3b155, and a platform for continued studies of intermolecular interactions governing disease-related alternative splicing in eukaryotic cells.


Subject(s)
Multiprotein Complexes/chemistry , Nuclear Proteins/chemistry , RNA-Binding Proteins/chemistry , Splicing Factor U2AF/chemistry , Crystallography, X-Ray , Humans , Jurkat Cells , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Protein Structure, Quaternary
6.
J Biol Chem ; 291(18): 9482-91, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26940874

ABSTRACT

Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/ß/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys(147), resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys(147) to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca(2+) for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.


Subject(s)
Bacterial Proteins/chemistry , Bacteroidaceae/enzymology , Cysteine Proteases/chemistry , Gastrointestinal Microbiome , Crystallography, X-Ray , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
7.
J Mol Biol ; 428(6): 1130-1141, 2016 Mar 27.
Article in English | MEDLINE | ID: mdl-26829219

ABSTRACT

The Dlx5 homeodomain is a transcription factor related to the Drosophila distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including split hand and foot malformation 1 in humans. Our characterization of a Dlx5 homeodomain:(CGACTAATTAGTCG)2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A Q186H mutation linked to split hand and foot malformation 1 likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and they likely destabilize the formation of functional complexes.


Subject(s)
DNA/chemistry , DNA/metabolism , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Limb Deformities, Congenital/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism , Crystallography, X-Ray , Homeodomain Proteins/genetics , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Transcription Factors/genetics
8.
Proteins ; 84(3): 316-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26650892

ABSTRACT

Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + ß barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.


Subject(s)
Bacterial Proteins/chemistry , Cholic Acids/chemistry , Clostridium/enzymology , Hydro-Lyases/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Catalytic Domain , Cholic Acids/biosynthesis , Crystallography, X-Ray , Humans , Hydro-Lyases/genetics , Hydrogen Bonding , Hydroxylation , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Secondary , Structural Homology, Protein
9.
mBio ; 6(5): e02327-14, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26374125

ABSTRACT

UNLABELLED: Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (or dl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminal l-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCE: Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.


Subject(s)
Aminopeptidases/chemistry , Aminopeptidases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , src Homology Domains , Aminopeptidases/genetics , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , DNA Mutational Analysis , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , Substrate Specificity
10.
Protein Sci ; 24(10): 1600-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26177955

ABSTRACT

Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN-binding mechanism to flavodoxins-4 were obtained from the NMR structures of the apo-protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO) and exhibits the characteristic flavodoxin fold, with a central five-stranded parallel ß-sheet and five α-helices forming an α/ß-sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the ß-sheet and covers the FMN-binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins.


Subject(s)
Flavin Mononucleotide/chemistry , Flavodoxin/chemistry , Lactobacillus acidophilus/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Electron Transport , Flavodoxin/metabolism , Lactobacillus acidophilus/enzymology , Magnetic Resonance Spectroscopy , Protein Binding , Protein Folding
11.
PLoS One ; 10(3): e0122512, 2015.
Article in English | MEDLINE | ID: mdl-25826626

ABSTRACT

The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K+ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K+ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K+ ions across the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K+ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K+ gating ring assemblies.


Subject(s)
Receptor, trkA/chemistry , Chromatography, Affinity , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Conformation
12.
Proc Natl Acad Sci U S A ; 112(15): 4666-71, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25825768

ABSTRACT

NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.


Subject(s)
Cell Proliferation/genetics , Cellular Reprogramming/genetics , Homeodomain Proteins/genetics , Mutation , Pluripotent Stem Cells/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cells, Cultured , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , DNA/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Germ Layers/cytology , Germ Layers/metabolism , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice, Inbred C57BL , Models, Molecular , Molecular Sequence Data , Nanog Homeobox Protein , Nucleic Acid Conformation , Pluripotent Stem Cells/cytology , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Tertiary , Transfection
13.
Structure ; 22(12): 1799-1809, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25465128

ABSTRACT

GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Šresolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family.


Subject(s)
Models, Molecular , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Peptidoglycan/metabolism , Bacteroides , Crystallography, X-Ray , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2640-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286848

ABSTRACT

The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Šresolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5'-monophosphate-3-deoxy-D-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of D-ribulose 5-phosphate to D-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/metabolism , Bacteroides fragilis/chemistry , Aldose-Ketose Isomerases/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Cytidine Monophosphate/analogs & derivatives , Cytidine Monophosphate/chemistry , Histidine/chemistry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Sugar Acids/chemistry
15.
PLoS One ; 9(9): e107309, 2014.
Article in English | MEDLINE | ID: mdl-25197798

ABSTRACT

Kanadaptin is a nuclear protein of unknown function that is widely expressed in mammalian tissues. The crystal structure of the forkhead-associated (FHA) domain of human kanadaptin was determined to 1.6 Å resolution. The structure reveals an asymmetric dimer in which one monomer is complexed with a phosphopeptide mimic derived from a peptide segment from the N-terminus of a symmetry-related molecule as well as a sulfate bound to the structurally conserved phosphothreonine recognition cleft. This structure provides insights into the molecular recognition features utilized by this family of proteins and represents the first evidence that kanadaptin is likely involved in a phosphorylation-mediated signaling pathway. These results will be of use for designing experiments to further probe the function of kanadaptin.


Subject(s)
Antiporters/chemistry , Antiporters/metabolism , Phosphopeptides/metabolism , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Phosphopeptides/chemistry , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary
16.
Protein Sci ; 23(10): 1380-91, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25044324

ABSTRACT

Crystal structures of three members (BACOVA_00364 from Bacteroides ovatus, BACUNI_03039 from Bacteroides uniformis and BACEGG_00036 from Bacteroides eggerthii) of the Pfam domain of unknown function (DUF4488) were determined to 1.95, 1.66, and 1.81 Å resolutions, respectively. The protein structures adopt an eight-stranded, calycin-like, ß-barrel fold and bind an endogenous unknown ligand at one end of the ß-barrel. The amino acids interacting with the ligand are not conserved in any other protein of known structure with this particular fold. The size and chemical environment of the bound ligand suggest binding or transport of a small polar molecule(s) as a potential function for these proteins. These are the first structural representatives of a newly defined PF14869 (DUF4488) Pfam family.


Subject(s)
Bacterial Proteins/chemistry , Bacteroides/metabolism , Carbohydrate Metabolism , Bacteroides/chemistry , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Sequence Alignment
17.
Protein Sci ; 23(8): 1060-76, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24888348

ABSTRACT

Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.


Subject(s)
Eubacterium/enzymology , Microbiota , Oxidoreductases/metabolism , Porphyromonas gingivalis/enzymology , Pyridoxal Phosphate/metabolism , Transaminases/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Oxidoreductases/chemistry , Protein Conformation , Pyridoxal Phosphate/chemistry , Transaminases/chemistry
18.
J Mol Biol ; 426(1): 169-84, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24051416

ABSTRACT

Tn916-like conjugative transposons carrying antibiotic resistance genes are found in a diverse range of bacteria. Orf14 within the conjugation module encodes a bifunctional cell wall hydrolase CwlT that consists of an N-terminal bacterial lysozyme domain (N-acetylmuramidase, bLysG) and a C-terminal NlpC/P60 domain (γ-d-glutamyl-l-diamino acid endopeptidase) and is expected to play an important role in the spread of the transposons. We determined the crystal structures of CwlT from two pathogens, Staphylococcus aureus Mu50 (SaCwlT) and Clostridium difficile 630 (CdCwlT). These structures reveal that NlpC/P60 and LysG domains are compact and conserved modules, connected by a short flexible linker. The LysG domain represents a novel family of widely distributed bacterial lysozymes. The overall structure and the active site of bLysG bear significant similarity to other members of the glycoside hydrolase family 23 (GH23), such as the g-type lysozyme (LysG) and Escherichia coli lytic transglycosylase MltE. The active site of bLysG contains a unique structural and sequence signature (DxxQSSES+S) that is important for coordinating a catalytic water. Molecular modeling suggests that the bLysG domain may recognize glycan in a similar manner to MltE. The C-terminal NlpC/P60 domain contains a conserved active site (Cys-His-His-Tyr) that appears to be specific to murein tetrapeptide. Access to the active site is likely regulated by isomerism of a side chain atop the catalytic cysteine, allowing substrate entry or product release (open state), or catalysis (closed state).


Subject(s)
DNA Transposable Elements , Hydrolases/chemistry , Amino Acid Sequence , Catalytic Domain , Clostridioides difficile/genetics , Crystallography, X-Ray , Hydrolases/genetics , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Staphylococcus aureus/genetics
19.
Proteins ; 82(1): 164-70, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23852666

ABSTRACT

PF10014 is a novel family of 2-oxyglutarate-Fe(2+) -dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the ß-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site.


Subject(s)
Catalytic Domain/genetics , Comamonadaceae/enzymology , Conserved Sequence/genetics , Dioxygenases/chemistry , Models, Molecular , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Crystallization , DNA Primers/genetics , Dioxygenases/genetics , Molecular Sequence Data , Sequence Analysis, DNA
20.
Proteins ; 82(6): 1086-92, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24174223

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family.


Subject(s)
Bacterial Proteins/chemistry , Pseudomonas aeruginosa , Amino Acid Sequence , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , Protein Structure, Secondary , Quorum Sensing
SELECTION OF CITATIONS
SEARCH DETAIL
...