Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; 20(15): e2306360, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010121

ABSTRACT

Nanoplatelets (NPLs) share excellent luminescent properties with their symmetric quantum dots counterparts and entail special characters benefiting from the shape, like the thickness-dependent bandgap and anisotropic luminescence. However, perovskite NPLs, especially those based on iodide, suffer from poor spectral and phase stability. Here, stable CsPbI3 NPLs obtained by accelerating the crystallization process in ambient-condition synthesis are reported. By this kinetic control, the rectangular NPLs into quasi-square NPLs are tuned, where enlarged width endows the NPLs with a lower surface-area-to-volume ratio (S/V ratio), leading to lower surficial energy and thus improved endurance against NPL fusion (cause for spectral shift or phase transformation). The accelerated crystallization, denoting the fast nucleation and short period of growth in this report, is enabled by preparing a precursor with complete transformation of PbI2 into intermediates (PbI3 -), through an additional iodide supplier (e.g., zinc iodide). The excellent color stability of the materials remains in the light-emitting diodes under various bias stresses.

2.
ACS Nanosci Au ; 3(5): 389-397, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37868225

ABSTRACT

We have investigated the effects of high-energy electron irradiation on the oxidation of copper nanoparticles in environmental scanning transmission electron microscopy (ESTEM). The hemispherically shaped particles were oxidized in 3 mbar of O2 in a temperature range 100-200 °C. The evolution of the particles was recorded with sub-nanometer spatial resolution in situ in ESTEM. The oxidation encompasses the formation of outer and inner oxide shells on the nanoparticles, arising from the concurrent diffusion of copper and oxygen out of and into the nanoparticles, respectively. Our results reveal that the electron beam actively influences the reaction and overall accelerates the oxidation of the nanoparticles when compared to particles oxidized without exposure to the electron beam. However, the extent of this electron beam-assisted acceleration of oxidation diminishes at higher temperatures. Moreover, we observe that while oxidation through the outward diffusion of Cu+ cations is enhanced, the electron beam appears to hinder oxidation through the inward diffusion of O2- anions. Our results suggest that the impact of the high-energy electrons in ESTEM oxidation of Cu nanoparticles is mostly related to kinetic energy transfer, charging, and ionization of the gas environment, and the beam can both enhance and suppress reaction rates.

3.
Nanoscale Adv ; 4(16): 3353-3361, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36131711

ABSTRACT

Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca3Co4O9 films can be engineered through nanoporosity control by annealing multiple Ca(OH)2/Co3O4 reactant bilayers with characteristic bilayer thicknesses (b t ). Our results show that doubling b t , e.g., from 12 to 26 nm, more than triples the average pore size from ∼120 nm to ∼400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of σ ∼ 90 S cm-1 and a high Seebeck coefficient of α ∼ 135 µV K-1, but also a thermal conductivity as low as κ ∼ 0.87 W m-1 K-1. The nanoporous Ca3Co4O9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.

4.
ACS Omega ; 7(27): 23988-23994, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847324

ABSTRACT

Nanoporous Ca3Co4O9 exhibits high thermoelectric properties and low thermal conductivity and can be made mechanically flexible by nanostructural design. To improve the mechanical flexibility with retained thermoelectric properties near room temperature, however, it is desirable to incorporate an organic filler in this nanoporous inorganic matrix material. Here, double-layer nanoporous Ca3Co4O9/PEDOT:PSS thin films were synthesized by spin-coating PEDOT:PSS into the nanopores. The obtained hybrid films exhibit high Seebeck coefficient (∼+130 µV/K) and thermoelectric power factor (0.75 µW cm-1 K-2) at room temperature with no deterioration in electrical properties after cyclic bending tests (98% preservation of electrical conductivity after 1000 cycles bending to a bending radius of 3 mm). Compared with the nanoporous Ca3Co4O9 thin film, the mechanical flexibility of the hybrid film can be effectively improved after hybrid with PEDOT:PSS with only a slight decrease of the thermoelectric properties.

5.
Adv Sci (Weinh) ; 9(25): e2202594, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35851767

ABSTRACT

Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3 Sb1.5 Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.

6.
Nanoscale ; 13(1): 311-319, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33338088

ABSTRACT

A vacancy-ordered MXene, Mo1.33CTz, obtained from the selective etching of Al and Sc from the parent i-MAX phase (Mo2/3Sc1/3)2AlC has previously shown excellent properties for supercapacitor applications. Attempts to synthesize the same MXene from another precursor, (Mo2/3Y1/3)2AlC, have not been able to match its forerunner. Herein, we show that the use of an AlY2.3 alloy instead of elemental Al and Y for the synthesis of (Mo2/3Y1/3)2AlC i-MAX, results in a close to 70% increase in sample purity due to the suppression of the main secondary phase, Mo3Al2C. Furthermore, through a modified etching procedure, we obtain a Mo1.33CTz MXene of high structural quality and improve the yield by a factor of 6 compared to our previous efforts. Free-standing films show high volumetric (1308 F cm-3) and gravimetric (436 F g-1) capacitances and a high stability (98% retention) at the level of, or even beyond, those reported for the Mo1.33CTz MXene produced from the Sc-based i-MAX. These results are of importance for the realization of high quality MXenes through use of more abundant elements (Y vs. Sc), while also reducing waste (impurity) material and facilitating the synthesis of a high-performance material for applications.

7.
ACS Sustain Chem Eng ; 8(47): 17368-17378, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33335814

ABSTRACT

Hybrids between biopolymeric materials and low-cost conductive carbon-based materials are interesting materials for applications in electronics, potentially reducing the need for materials that generate environmentally harmful electronic waste. Herein we investigate a scalable ball-milling method to form graphene nanoplatelets (GNPs) by milling graphite flakes with aqueous dispersions of proteins or protein nanofibrils (PNFs). Aqueous GNP dispersions with high concentrations (up to 3.2 mg mL-1) are obtained under appropriate conditions. The PNFs/proteins help to exfoliate graphite and stabilize the resulting GNP dispersions by electrostatic repulsion. PNFs are prepared from hen egg white lysozyme (HEWL) and ß-lactoglobulin (BLG). The GNP dispersions can be processed into free-standing films having an electrical conductivity of up to 110 S m-1. Alternatively, the GNP dispersions can be drop-cast on PET substrates, resulting in mechanically flexible films having an electrical conductivity of up to 65 S m-1. The drop-cast films are investigated regarding their thermoelectric properties, having Seebeck coefficients of about 50 µV K-1. By annealing drop-cast films and thus carbonizing residual PNFs, an increase of electrical conductivity, coupled with a modest decrease in Seebeck coefficient, is obtained resulting in materials displaying power factors of up to 4.6 µW m-1 K-2.

8.
Nano Lett ; 18(12): 7576-7582, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30398886

ABSTRACT

The feature size of patterns obtained by electron-beam lithography (EBL) depends critically on resist properties, beam parameters, development process, and instrument limitations. Frozen layers of simple organic molecules such as n-alkanes behave as negative-tone resists for EBL. With the unique advantage of an in situ thermal treatment replacing chemical development, the entire lithographic process can be performed within a single instrument, thus removing the influence of chemical developers on the feature size. By using an environmental transmission electron microscope, we can also minimize the influence of instrumental limitations and explore the fundamental link between resist characteristics and feature size. Our results reveal that the onset dose of organic ice resists correlates with the inverse molecular weight and that in the thermal development the role of change in solubility of polymers is mirrored in a shift in the solid/vapor critical temperature of organic ices. With a 0.4 pA beam current, we obtained 4.5, 5.5, and 8.5 nm lines with frozen octane, undecane, and tetradecane, respectively, consistent with the predictions of a model we developed that links beam profile and feature size. The knowledge acquired on the response of small organic molecules to electron irradiation, combined with the flexibility and operational advantages of using them as qualified EBL resists, provides us with new opportunities for the design and production of nanodevices and broadens the reach of EBL especially toward biological applications.

9.
Nano Lett ; 17(12): 7886-7891, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29156134

ABSTRACT

Electron-beam lithography (EBL) is the backbone technology for patterning nanostructures and manufacturing nanodevices. It involves processing and handling synthetic resins in several steps, each requiring optimization and dedicated instrumentation in cleanroom environments. Here, we show that simple organic molecules, e.g. alcohols, condensed to form thin-films at low temperature demonstrate resist-like capabilities for EBL applications and beyond. The entire lithographic process takes place in a single instrument, and avoids exposing  users to chemicals and the need of cleanrooms. Unlike EBL that requires large samples with optically flat surfaces, we patterned on fragile membranes only 5 nm-thin, and 2 × 2 mm2 diamond samples. We created patterns on the nanometer to sub-millimeter scale, as well as three-dimensional structures by stacking layers of frozen organic molecules. Finally, using plasma etching, the organic ice resist (OIR) patterns are used to structure the underlying material, and thus enable nanodevice fabrication.

10.
Sci Rep ; 5: 12940, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26260698

ABSTRACT

A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.


Subject(s)
Cell Separation/methods , Erythrocytes/metabolism , Macrophages/cytology , Spleen/cytology , Animals , Blood Cell Count , Cell Lineage , Ferrosoferric Oxide/adverse effects , Ferrosoferric Oxide/chemistry , Flow Cytometry , Humans , Liver/cytology , Macrophages/metabolism , Mice , Phagocytosis , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...