Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 18(11): e0294909, 2023.
Article in English | MEDLINE | ID: mdl-38033124

ABSTRACT

BACKGROUND: Retinal degenerative diseases such as diabetic retinopathy and diabetic macular edema are characterized by impaired retinal endothelial cells (RECs) functionality. While the role of glycolysis in glucose homeostasis is well-established, its contributions to REC barrier assembly and cell spreading remain poorly understood. This study aimed to investigate the importance of upper glycolytic components in regulating the behavior of human RECs (HRECs). METHODS: Electric cell-substrate impedance sensing (ECIS) technology was employed to analyze the real-time impact of various upper glycolytic components on maintaining barrier functionality and cell spreading of HRECs by measuring cell resistance and capacitance, respectively. Specific inhibitors were used: WZB117 to inhibit Glut1/3, lonidamine to inhibit hexokinases, PFK158 to inhibit the PFKFB3-PFK axis, and TDZD-8 to inhibit aldolases. Additionally, the viability of HRECs was evaluated using the lactate dehydrogenase (LDH) cytotoxicity assay. RESULTS: The most significant reduction in electrical resistance and increase in capacitance of HRECs resulted from the dose-dependent inhibition of PFKFB3/PFK using PFK158, followed by aldolase inhibition using TDZD-8. LDH level analysis at 24- and 48-hours post-treatment with PFK158 (1 µM) or TDZD-8 (1 and 10 µM) showed no significant difference compared to the control, indicating that the disruption of HRECs functionality was not attributed to cell death. Conversely, inhibiting Glut1/3 with WZB117 had minimal impact on HREC behavior, except at higher concentrations (10 µM) and prolonged exposure. Lastly, inhibiting hexokinase with lonidamine did not noticeably alter HREC cell behavior. CONCLUSION: This study illustrates the unique impacts of components within upper glycolysis on HREC functionality, emphasizing the crucial role of the PFKFB3/PFK axis in regulating HREC behavior. Understanding the specific contributions of each glycolytic component in preserving normal REC functionality will facilitate the development of targeted interventions for treating endothelial cell dysfunction in retinal disorders while minimizing effects on healthy cells.


Subject(s)
Diabetic Retinopathy , Macular Edema , Humans , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Glucose Transporter Type 1/metabolism , Macular Edema/metabolism , Retina/metabolism , Glucose/pharmacology , Glucose/metabolism
2.
Sci Rep ; 13(1): 15973, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749155

ABSTRACT

Proliferative diabetic retinopathy (PDR) remains a leading cause of blindness despite progress in screening and treatment. Recently, the Warburg effect, a metabolic alteration affecting amino acid (AA) metabolism in proliferating cells, has drawn attention regarding its role in PDR. This study aimed to investigate the impact of the Warburg effect on AA metabolism in human retinal endothelial cells (HRECs) subjected to PDR-associated risk factors and validate the findings in patients with PDR. In vitro experiments exposed HRECs to high glucose (HG) and/or hypoxia (Hyp), known inducers of the Warburg effect. The HG + Hyp group of HRECs exhibited significant differences in non-essential AAs with aliphatic non-polar side chains, mainly driven by elevated glycine concentrations. Pathway enrichment analysis revealed several glycine metabolism-related pathways significantly altered due to the Warburg effect induced by HG + Hyp. Crucially, vitreous humor samples from PDR patients displayed higher glycine levels compared to non-diabetic and diabetic patients without PDR. The odds ratio for PDR patients with glycine levels above the cut-off of 0.0836 µM was 28 (p = 0.03) compared to non-PDR controls. In conclusion, this study provides mechanistic insights into how a specific Warburg effect subtype contributes to glycine accumulation in PDR and supports glycine's potential as a biomarker for PDR pathogenesis.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Fabaceae , Humans , Endothelial Cells , Retina , Glycine , Hypoxia , Homeostasis
3.
Cells ; 11(24)2022 12 19.
Article in English | MEDLINE | ID: mdl-36552890

ABSTRACT

PURPOSE: Mitochondrial dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to investigate the role of different mitochondrial constituents, specifically those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. METHODS: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components: capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: rotenone for complex I, oligomycin for complex V (ATP synthase), and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: Cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). RESULTS: Rotenone (1 µM) produced the greatest reduction in Z, followed by FCCP (1 µM), whereas no reduction in Z was observed after oligomycin (1 µM) treatment. We then further deconvoluted the effects of these inhibitors on the Rb, α, and Cm parameters. Rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 h and increased Cm without a significant effect on α. Lastly, of all the inhibitors used, oligomycin had the lowest impact on Rb, as evidenced by the fact that this value became similar to that of the control group at the end of the experiment without noticeable effects on Cm or α. CONCLUSION: Our study demonstrates the differential roles of complex I, complex V, and OxPhos coupling in maintaining the barrier functionality of HRECs. We specifically showed that complex I is the most important component in regulating HREC barrier integrity. These observed differences are significant since they could serve as the basis for future pharmacological and gene expression studies aiming to improve the activity of complex I and thereby provide avenues for therapeutic modalities in endothelial-associated retinal diseases.


Subject(s)
Diabetic Retinopathy , Oxidative Phosphorylation , Infant, Newborn , Humans , Rotenone/pharmacology , Endothelial Cells/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Mitochondria/metabolism , Diabetic Retinopathy/metabolism , Oligomycins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...