Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38330494

ABSTRACT

Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.


Subject(s)
Polymers , Radiotherapy, Conformal , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Radiometry/methods
2.
Med Phys ; 48(9): 5501-5510, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34260079

ABSTRACT

OBJECTIVE: To assess the feasibility of performing dose measurements in the target (prostate) and an adjacent organ at risk (rectum) using polymer dosimetry gel and thermoluminescence detectors (TLDs) in an anthropomorphic, deformable, and multimodal pelvis phantom (ADAM PETer). METHODS: The 3D printed prostate organ surrogate of the ADAM PETer phantom was filled with polymer dosimetry gel. Nine TLD600 (LiF:Mg,Ti) were installed in 3 × 3 rows on a specifically designed 3D-printed TLD holder. The TLD holder was inserted into the rectum at the level of the prostate and fixed by a partially inflated endorectal balloon. Computed tomography (CT) images were taken and treatment planning was performed. A prescribed dose of 4.5 Gy was delivered to the planning target volume (PTV). The doses measured by the dosimetry gel in the prostate and the TLDs in the rectum ("measured dose") were compared to the doses calculated by the treatment planning system ("planned dose") on a voxel-by-voxel basis. RESULTS: In the prostate organ surrogate, the 3D-γ-index was 97.7% for the 3% dose difference and 3 mm distance to agreement criterium. In the center of the prostate organ surrogate, measured and planned doses showed only minor deviations (<0.1 Gy, corresponding to a percentage error of 2.22%). On the edges of the prostate, slight differences between planned and measured doses were detected with a maximum deviation of 0.24 Gy, corresponding to 5.3% of the prescribed dose. The difference between planned and measured doses in the TLDs was on average 0.08 Gy (range: 0.02-0.21 Gy), corresponding to 1.78% of the prescribed dose (range: 0.44%-4.67%). CONCLUSIONS: The present study demonstrates the feasibility of using polymer dosimetry gel and TLDs for 3D and 1D dose measurements in the prostate and the rectum organ surrogates in an anthropomorphic, deformable and multimodal phantom. The described methodology might offer new perspectives for end-to-end tests in image-guided adaptive radiotherapy workflows.


Subject(s)
Polymers , Radiometry , Feasibility Studies , Humans , Male , Pelvis/diagnostic imaging , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Thermoluminescent Dosimetry
3.
Phys Med Biol ; 63(2): 025001, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29239855

ABSTRACT

An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84 ± 0.12)% and a mean absolute error of (1.27 ± 0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02 ± 0.15)% and a mean absolute error of (0.10 ± 0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.


Subject(s)
Bone and Bones/diagnostic imaging , Brain/diagnostic imaging , Lung/diagnostic imaging , Protons , Tomography, X-Ray Computed/methods , Animals , Bone and Bones/radiation effects , Brain/radiation effects , Calibration , Cattle , Humans , Image Processing, Computer-Assisted/methods , Lung/radiation effects , Swine , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...