Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 85(22): 4739-42, 2000 Nov 27.
Article in English | MEDLINE | ID: mdl-11082640

ABSTRACT

Spin-mass vortices have been observed to form in rotating superfluid 3He-B, following the absorption of a thermal neutron and a rapid transition from the normal to the superfluid state. The spin-mass vortex is a composite defect which consists of a planar soliton (wall) which terminates on a linear core (string). This observation fits well within the framework of a cosmological scenario for defect formation, known as the Kibble-Zurek mechanism. It suggests that in the early Universe analogous cosmological defects might have formed.

2.
Nature ; 404(6777): 471-3, 2000 Mar 30.
Article in English | MEDLINE | ID: mdl-10761908

ABSTRACT

Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum field theories they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density Bose-Einstein condensates as quantized vortex lines. A conventional quantized vortex line consists of a central core around which the phase of the order parameter winds by 27(pi)n, while within the core the order parameter vanishes or is depleted from the bulk value. Usually vortices are singly quantized (that is, have n = 1). But it has been theoretically predicted that, in superfluid 3He-A, vortex lines are possible that have n = 2 and continuous structure, so that the orientation of the multicomponent order parameter changes smoothly throughout the vortex while the amplitude remains constant. Here we report direct proof, based on high-resolution nuclear magnetic resonance measurements, that the most common vortex line in 3He-A has n = 2. One vortex line after another is observed to form in a regular periodic process, similar to a phase-slip in the Josephson effect.

SELECTION OF CITATIONS
SEARCH DETAIL