Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Dev Cell ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38776925

ABSTRACT

During neural tube (NT) development, the notochord induces an organizer, the floorplate, which secretes Sonic Hedgehog (SHH) to pattern neural progenitors. Conversely, NT organoids (NTOs) from embryonic stem cells (ESCs) spontaneously form floorplates without the notochord, demonstrating that stem cells can self-organize without embryonic inducers. Here, we investigated floorplate self-organization in clonal mouse NTOs. Expression of the floorplate marker FOXA2 was initially spatially scattered before resolving into multiple clusters, which underwent competition and sorting, resulting in a stable "winning" floorplate. We identified that BMP signaling governed long-range cluster competition. FOXA2+ clusters expressed BMP4, suppressing FOXA2 in receiving cells while simultaneously expressing the BMP-inhibitor NOGGIN, promoting cluster persistence. Noggin mutation perturbed floorplate formation in NTOs and in the NT in vivo at mid/hindbrain regions, demonstrating how the floorplate can form autonomously without the notochord. Identifying the pathways governing organizer self-organization is critical for harnessing the developmental plasticity of stem cells in tissue engineering.

2.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759552

ABSTRACT

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Mutation/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy
3.
Biomaterials ; 301: 122203, 2023 10.
Article in English | MEDLINE | ID: mdl-37515903

ABSTRACT

Lung infections are one of the leading causes of death worldwide, and this situation has been exacerbated by the emergence of COVID-19. Pre-clinical modelling of viral infections has relied on cell cultures that lack 3D structure and the context of lung extracellular matrices. Here, we propose a bioreactor-based, whole-organ lung model of viral infection. The bioreactor takes advantage of an automated system to achieve efficient decellularization of a whole rat lung, and recellularization of the scaffold using primary human bronchial cells. Automatization allowed for the dynamic culture of airway epithelial cells in a breathing-mimicking setup that led to an even distribution of lung epithelial cells throughout the distal regions. In the sealed bioreactor system, we demonstrate proof-of-concept for viral infection within the epithelialized lung by infecting primary human airway epithelial cells and subsequently injecting neutrophils. Moreover, to assess the possibility of drug screening in this model, we demonstrate the efficacy of the broad-spectrum antiviral remdesivir. This whole-organ scale lung infection model represents a step towards modelling viral infection of human cells in a 3D context, providing a powerful tool to investigate the mechanisms of the early stages of pathogenic infections and the development of effective treatment strategies for respiratory diseases.


Subject(s)
COVID-19 , Pneumonia , Virus Diseases , Rats , Humans , Animals , Lung , Epithelial Cells , Tissue Scaffolds/chemistry
4.
Nat Commun ; 14(1): 2829, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198156

ABSTRACT

Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment. We pinpoint the HGF/MET/STAT3 axis as a potent enhancer of reprogramming, which acts via HGF accumulation within the confined system of microfluidics, and in conventional dishes needs to be supplied exogenously to enhance efficiency. Our data suggest that human cellular reprogramming is a transcription factor-driven process that it is deeply dependent on extracellular context and cell population determinants.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cellular Reprogramming , Gene Expression Regulation , Transcription Factors/genetics , Transcription Factors/metabolism , Cells, Cultured
5.
Nat Commun ; 14(1): 3128, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253730

ABSTRACT

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.


Subject(s)
Bioprinting , Organoids , Hydrogels/chemistry , Tissue Engineering/methods , Cell Polarity , Lung
7.
Dev Biol ; 494: 60-70, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36509125

ABSTRACT

Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells. Here, we document progressive apical enrichment of non-muscle myosin-II in mitotic, but not non-mitotic, neuroepithelial cells with smaller apical areas. Live-imaging of the chick posterior neuropore confirms apical constriction synchronised with mitosis, reaching maximal constriction by anaphase, before division and re-dilation. Mitotic apical constriction amplitude is significantly greater than interphase constrictions. To investigate conservation in humans, we characterised early stages of iPSC differentiation through dual SMAD-inhibition to robustly produce pseudostratified neuroepithelia with apically enriched actomyosin. These cultured neuroepithelial cells achieve an equivalent apical area to those in mouse embryos. iPSC-derived neuroepithelial cells have large apical areas in G2 which constrict in M phase and retain this constriction in G1/S. Given that this differentiation method produces anterior neural identities, we studied the anterior neuroepithelium of the elevating mouse mid-brain neural tube. Instead of constricting, mid-brain mitotic neuroepithelial cells have larger apical areas than interphase cells. Tissue geometry differs between the apically convex early midbrain and flat posterior neuropore. Culturing human neuroepithelia on equivalently convex surfaces prevents mitotic apical constriction. Thus, neuroepithelial cells undergo high-amplitude apical constriction synchronised with cell cycle progression but the timing of their constriction if influenced by tissue geometry.


Subject(s)
Mitosis , Nervous System , Humans , Animals , Mice , Constriction , Cell Cycle , Cell Differentiation/physiology
8.
Transl Res ; 253: 57-67, 2023 03.
Article in English | MEDLINE | ID: mdl-36096350

ABSTRACT

Pancreatic cancer is likely to become one of the leading causes of cancer-related death in many countries within the next decade. Surgery is the potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC), although only 10%-20% of patients have a resectable disease after diagnosis. Despite recent advances in curative surgery the current prognosis ranges from 6% to 10% globally. One of the main issues at the pre-clinical level is the lacking of model which simultaneously reflects the tumour microenvironment (TME) at both structural and cellular levels. Here we describe an innovative tissue engineering approach applied to PDAC starting from decellularized human biopsies in order to generate an organotypic 3D in vitro model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence, mechanical analysis, and scanning electron microscopy. Mass spectrometry confirmed a different extracellular matrix (ECM) composition between decellularized healthy pancreas and PDAC by identifying a total of 110 non-redundant differently expressed proteins. Immunofluorescence analyses after 7 days of scaffold recellularization with PANC-1 and AsPC-1 pancreatic cell lines, were performed to assess the biocompatibility of 3D matrices to sustain engraftment, localization and infiltration. Finally, both PANC-1 and AsPC-1 cells cultured in 3D matrices showed a reduced response to treatment with FOLFIRINOX if compared to conventional bi-dimensional culture. Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the pancreatic cancer microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of pancreatic cancer response to chemotherapy agents.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Extracellular Matrix/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
9.
Cell Stem Cell ; 29(12): 1703-1717.e7, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459970

ABSTRACT

The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Proteomics , Extracellular Matrix , Morphogenesis
10.
Sci Signal ; 15(761): eabk2552, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36413598

ABSTRACT

To reach inflamed tissues from the circulation, neutrophils must overcome physical constraints imposed by the tissue architecture, such as the endothelial barrier or the three-dimensional (3D) interstitial space. In these microenvironments, neutrophils are forced to migrate through spaces smaller than their own diameter. One of the main challenges for cell passage through narrow gaps is the deformation of the nucleus, the largest and stiffest organelle in cells. Here, we showed that chemokines, the extracellular signals that guide cell migration in vivo, modulated nuclear plasticity to support neutrophil migration in restricted microenvironments. Exploiting microfabricated devices, we found that the CXC chemokine CXCL12 enhanced the nuclear pliability of mouse bone marrow-derived neutrophils to sustain their migration in 3D landscapes. This previously uncharacterized function of CXCL12 was mediated by the atypical chemokine receptor ACKR3 (also known as CXCR7), required protein kinase A (PKA) activity, and induced chromatin compaction, which resulted in enhanced cell migration in 3D. Thus, we propose that chemical cues regulate the nuclear plasticity of migrating leukocytes to optimize their motility in restricted microenvironments.


Subject(s)
Cell Nucleus , Neutrophils , Mice , Animals , Cell Movement , Signal Transduction , Chromatin
11.
Front Bioeng Biotechnol ; 10: 907159, 2022.
Article in English | MEDLINE | ID: mdl-35935488

ABSTRACT

The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.

12.
Lancet Child Adolesc Health ; 6(9): 654-666, 2022 09.
Article in English | MEDLINE | ID: mdl-35963270

ABSTRACT

Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.


Subject(s)
COVID-19 , Regenerative Medicine , Child , Humans , Tissue Engineering
13.
Front Bioeng Biotechnol ; 10: 871867, 2022.
Article in English | MEDLINE | ID: mdl-36032711

ABSTRACT

In the last two decades lab-on-chip models, specifically heart-on-chip, have been developed as promising technologies for recapitulating physiological environments suitable for studies of drug and environmental effects on either human physiological or patho-physiological conditions. Most human heart-on-chip systems are based on integration and adaptation of terminally differentiated cells within microfluidic context. This process requires prolonged procedures, multiple steps, and is associated with an intrinsic variability of cardiac differentiation. In this view, we developed a method for cardiac differentiation-on-a-chip based on combining the stage-specific regulation of Wnt/ß-catenin signaling with the forced expression of transcription factors (TFs) that timely recapitulate hallmarks of the cardiac development. We performed the overall cardiac differentiation from human pluripotent stem cells (hPSCs) to cardiomyocytes (CMs) within a microfluidic environment. Sequential forced expression of cardiac TFs was achieved by a sequential mmRNAs delivery of first MESP1, GATA4 followed by GATA4, NKX2.5, MEF2C, TBX3, and TBX5. We showed that this optimized protocol led to a robust and reproducible approach to obtain a cost-effective hiPSC-derived heart-on-chip. The results showed higher distribution of cTNT positive CMs along the channel and a higher expression of functional cardiac markers (TNNT2 and MYH7). The combination of stage-specific regulation of Wnt/ß-catenin signaling with mmRNAs encoding cardiac transcription factors will be suitable to obtain heart-on-chip model in a cost-effective manner, enabling to perform combinatorial, multiparametric, parallelized and high-throughput experiments on functional cardiomyocytes.

14.
Biochim Biophys Acta Gen Subj ; 1866(8): 130165, 2022 08.
Article in English | MEDLINE | ID: mdl-35513203

ABSTRACT

BACKGROUND: Phosphorylated proteins are known to be present in multiple body fluids in normal conditions, and abnormally accumulated under some pathological conditions. The biological significance of their role in the extracellular space has started being elucidated only recently, for example in bone mineralization, neural development, and coagulation. Here, we address some criticalities of conventional culture systems for the study of the extracellular regulation of phosphorylation. METHODS: We make use of microfluidics to scale-down the culture volume to a size comparable to the interstitial spaces occurring in vivo. The phosphoprotein content of conditioned media was analyzed by a colorimetric assay that detects global phosphorylation. RESULTS: We found that miniaturization of the culture system increases phosphoprotein accumulation. Moreover, we demonstrated that in conventional culture systems dilution affects the extent of the phosphorylation reactions occurring within the extracellular space. On the other hand, in microfluidics the phosphorylation status was not affected by addition of adenosine triphosphate (ATP) and FAM20C Golgi Associated Secretory Pathway Kinase (FAM20C) ectokinase, as if their concentration was already not limiting for the phosphorylation reaction to occur. CONCLUSIONS: The volume of the extracellular environment plays a role in the process of extracellular phosphorylation due to its effect on the concentration of substrates, enzymes and co-factors. GENERAL SIGNIFICANCE: Thus, the biological role of extracellular phosphoregulation may be better appreciated within a microfluidic culture system.


Subject(s)
Calcification, Physiologic , Phosphoproteins , Adenosine Triphosphate/metabolism , Golgi Apparatus/metabolism , Phosphoproteins/metabolism , Phosphorylation
15.
Biomaterials ; 286: 121564, 2022 07.
Article in English | MEDLINE | ID: mdl-35576810

ABSTRACT

Nuclear deformation is an essential phenomenon allowing cell migration and can be observed in association with pathological conditions such as laminopathies, neurodegenerative disorders and diabetes. Abnormal nuclear morphologies are a hallmark of cancer progression and nuclear deformability is a necessary feature for metastatic progression. Nevertheless, the cellular processes and the key molecular components controlling nuclear shape are poorly understood, in part due to a limited availability of assays that allow high-throughput screening of nuclear morphology-phenotypes. In this study, we explore the application of micropillared substrates as the basis for a phenotypic screening platform aimed at identifying novel determinants of nuclear morphology. We designed PDMS substrates to maximize simplicity in image acquisition and analyses, and in a small-scale screening of inhibitors targeting chromatin-modifying enzymes, we identify histone deacetylation as cellular process involved in nuclear deformation. With increasingly specific targeting approaches, we identify HDAC2 as a novel player in controlling nuclear morphology through gene transcription repression. This study shows the effectiveness of micropillar-based substrates to act as phenotypic drug screening platforms and opens a new avenue in the identification of genes involved in determining the nuclear shape.


Subject(s)
Histone Deacetylase 2 , Neoplasms , Chromatin/genetics , Chromatin/metabolism , Drug Evaluation, Preclinical , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Phenotype
16.
Annu Rev Biomed Eng ; 24: 231-248, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35378044

ABSTRACT

An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Humans , Lab-On-A-Chip Devices , Microfluidics
17.
Cancers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406401

ABSTRACT

BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.

18.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Article in English | MEDLINE | ID: mdl-35165418

ABSTRACT

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Energy Metabolism/drug effects , Extracellular Matrix/drug effects , Lung Neoplasms/drug therapy , Mechanotransduction, Cellular/drug effects , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell-Matrix Junctions/drug effects , Cell-Matrix Junctions/metabolism , Cell-Matrix Junctions/pathology , Dynamins/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Peptide Elongation Factors/metabolism , Tumor Microenvironment
19.
Methods Mol Biol ; 2416: 53-71, 2022.
Article in English | MEDLINE | ID: mdl-34870830

ABSTRACT

Human induced pluripotent stem cells (iPSCs) are generated from somatic cells by the expression of a cocktail of transcription factors, and iPSCs have the capacity to generate in vitro all cell types of the human body. In addition to primed (conventional) iPSCs, several groups recently reported the generation of human naïve iPSCs, which are in a more primitive developmental state and have a broader developmental potential, as shown by their ability to form cells of the placenta. Human iPSCs have broad medical potential but their generation is often time-consuming, not scalable and requires viral vectors or stable genetic manipulations. To overcome such limitations, we developed protocols for high-efficiency generation of either conventional or naïve iPSCs by delivery of messenger RNAs (mRNAs) using a microfluidic system. In this protocol we describe how to produce microfluidic devices, and how to reprogram human somatic cells into naïve and primed iPSCs using these devices. We also describe how to transfer the iPSC colonies from the microfluidic devices over to standard multiwell plates for subsequent expansion of the cultures. Our approach does not require stable genetic modifications, is reproducible and cost-effective, allowing to produce patient-specific iPSCs for cell therapy, disease modeling, and in vitro developmental studies.


Subject(s)
Pluripotent Stem Cells , Cell Differentiation , Cellular Reprogramming , Female , Genetic Vectors , Humans , Induced Pluripotent Stem Cells , Microfluidics , Pregnancy , Transcription Factors
20.
Nat Commun ; 12(1): 6610, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785679

ABSTRACT

COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.


Subject(s)
COVID-19/pathology , Intestinal Mucosa/virology , Organoids/virology , SARS-CoV-2/physiology , Stomach/virology , Virus Replication/physiology , Aborted Fetus , Aged , Animals , COVID-19/virology , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Humans , Infant , Intestinal Mucosa/pathology , Middle Aged , Organoids/pathology , SARS-CoV-2/isolation & purification , Stomach/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...