Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008397

ABSTRACT

Radionuclide treatment of patients with neuroendocrine tumors has advanced in the last decades with favorable results using 177Lu-octreotate. However, the gap between the high cure rate in animal studies vs. patient studies indicates a potential to increase the curation of patients. The aim of this study was to investigate the tumor response for different fractionation schemes with 177Lu-octreotate. BALB/c mice bearing a human small-intestine neuroendocrine GOT1 tumor were either mock treated with saline or injected intravenously with a total of 30-120 MBq of 177Lu-octreotate: 1 × 30, 2 × 15, 1 × 60, 2 × 30, 1 × 120, 2 × 60, or 3 × 40 MBq. The tumor volume was measured twice per week until the end of the experiment. The mean tumor volume for mice that received 2 × 15 = 30 and 1 × 30 MBq 177Lu-octreotate was reduced by 61% and 52%, respectively. The mean tumor volume was reduced by 91% and 44% for mice that received 2 × 30 = 60 and 1 × 60 MBq 177Lu-octreotate, respectively. After 120 MBq 177Lu-octreotate, given as 1-3 fractions, the mean tumor volume was reduced by 91-97%. Multiple fractions resulted in delayed regrowth and prolonged overall survival by 20-25% for the 120 MBq groups and by 45% for lower total activities, relative to one fraction. The results indicate that fractionation and hyperfractionation of 177Lu-octreotate are beneficial for tumor reduction and prolongs the time to regrowth.

2.
Sci Rep ; 10(1): 15541, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968085

ABSTRACT

Effects of radiation and biodistribution of radionuclides are often studied in animal models. Circadian rhythm affects many biological functions and may influence the biokinetics of radionuclides and observed responses. The aim of this study was to investigate if the time during the day of 131I injection affects the biodistribution and absorbed dose to tissues in mice. Biodistribution studies were conducted on male C57BL/6 N mice for three diurnal time-series: the animals were i.v. injected with 160 kBq 131I at 8 am, 12 pm or 4 pm. The activity concentration in organs and tissues was measured at 1 h to 7 days after administration and absorbed dose at day 7 was determined. Comparison between the three time-series showed statistically significant differences in activity concentration in all investigated tissues and organs. Administration performed at 12 pm resulted in general in higher absorbed dose to the organs than injection performed at 8 am and 4 pm. Time of day of administration affects the biodistribution of 131I in mice and consequently the absorbed dose to individual organs. These findings advocate that subsequent biodistribution studies and dosimetry calculations should consider time-point of administration as a variable that could influence the results.


Subject(s)
Circadian Rhythm/physiology , Iodine Radioisotopes/pharmacokinetics , Animals , Drug Administration Schedule , Injections, Intravenous , Iodine Radioisotopes/administration & dosage , Male , Mice , Mice, Inbred C57BL , Tissue Distribution/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...