Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 7(10): e2300057, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36949550

ABSTRACT

Functional tissue engineering is a widely studied area of research with increasing importance in regenerative medicine, as well as in the development of in vitro models used for drug discovery and mimicking diseased tissues, among other applications. Electrospinning (ES) is one of the most widely used methods in these fields. It has attracted considerable interest because it can produce materials resembling the extracellular matrix of native tissues. The micro/nanofibers produced by this method provide a cell-friendly environment that promotes cellular activities. Cell electrospinning (C-ES) is based on the fundamental ES process and enables the encapsulation of viable cells in a micro/nanofibrous mesh. In this review, the process of C-ES and the materials used in this process are discussed. This work also discusses the applications of C-ES in tissue engineering, focusing on recent advances in this field.

2.
Polymers (Basel) ; 14(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36236187

ABSTRACT

Responsive materials, i.e., smart materials, have the ability to change their physical or chemical properties upon certain external signals. The development of nanofibrous halochromic materials, specifically combining the pH-sensitive functionality and unique nanofiber properties, could yield interesting new applications, especially when the common problem of dye leaching is successfully tackled. Therefore, in this article, we studied the fabrication process of polysaccharide-based halochromic nanofibrous materials by using a combination of various halochromic dyes (bromothymol blue, bromocresol green, and thymol blue) and cellulose acetate in a spinning solution using a one-pot strategy. The inhibition of leaching was addressed by using a complexing agent: poly-diallyl-dimethylammonium chloride (PDADMAC). The preparation of hybrid spinning solutions, their characterization, and ability to form continuous nanofibers were studied using a high production needle-less electrospinning system. The produced hybrid solutions and nanofibers were characterized, in terms of their rheological properties, chemical structure, morphology, and functionality. Fabricated nanofibrous halochromic structures show a clear color change upon exposure to different pH values, as well as the reduced leaching of dyes, upon the addition of a complexing agent. The leaching decreased by 61% in the case of bromocresol green, while, in the case of bromothymol blue and thymol blue, the leaching was reduced by 95 and 99%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...