Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 53(5): 1923-36, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20143782

ABSTRACT

Insomnia affects a growing portion of the adult population in the U.S. Most current therapeutic approaches to insomnia primarily address sleep onset latency. Through the 5-hydroxytryptamine(2A) (5-HT(2A)) receptor, serotonin (5-HT) plays a role in the regulation of sleep architecture, and antagonists/inverse-agonists of 5-HT(2A) have been shown to enhance slow wave sleep (SWS). We describe here a series of 5-HT(2A) inverse-agonists that when dosed in rats, both consolidate the stages of NREM sleep, resulting in fewer awakenings, and increase a physiological measure of sleep intensity. These studies resulted in the discovery of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxyphenyl]-3-(2,4-difluorophenyl)urea (Nelotanserin), a potent inverse-agonist of 5-HT(2A) that was advanced into clinical trials for the treatment of insomnia.


Subject(s)
Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Serotonin 5-HT2 Receptor Agonists , Sleep Initiation and Maintenance Disorders/drug therapy , Animals , Binding, Competitive , Inhibitory Concentration 50 , Male , Phenylurea Compounds/pharmacokinetics , Pyrazoles/pharmacokinetics , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/metabolism , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...