Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 48(9): 1918-1932, 2022 09.
Article in English | MEDLINE | ID: mdl-35811236

ABSTRACT

In this study, we compared multiple quantitative ultrasound metrics for the purpose of differentiating muscle in 20 healthy, 10 dystrophic and 10 obese mice. High-frequency ultrasound scans were acquired on dystrophic (D2-mdx), obese (db/db) and control mouse hindlimbs. A total of 248 image features were extracted from each scan, using brightness-mode statistics, Canny edge detection metrics, Haralick features, envelope statistics and radiofrequency statistics. Naïve Bayes and other classifiers were trained on single and pairs of features. The a parameter from the Homodyned K distribution at 40 MHz achieved the best univariate classification (accuracy = 85.3%). Maximum classification accuracy of 97.7% was achieved using a logistic regression classifier on the feature pair of a2 (K distribution) at 30 MHz and brightness-mode variance at 40MHz. Dystrophic and obese mice have muscle with distinct acoustic properties and can be classified to a high level of accuracy using a combination of multiple features.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Bayes Theorem , Mice , Mice, Inbred mdx , Muscle, Skeletal/diagnostic imaging , Obesity/diagnostic imaging
2.
IEEE Trans Med Imaging ; 41(3): 502-514, 2022 03.
Article in English | MEDLINE | ID: mdl-34570702

ABSTRACT

This work presents the first quantitative ultrasonic sound speed images of ex vivo limb cross-sections containing both soft tissue and bone using Full Waveform Inversion (FWI) with level set (LS) and travel time regularization. The estimated bulk sound speed of bone and soft tissue are within 10% and 1%, respectively, of ground truth estimates. The sound speed imagery shows muscle, connective tissue and bone features. Typically, ultrasound tomography (UST) using FWI is applied to imaging breast tissue properties (e.g. sound speed and density) that correlate with cancer. With further development, UST systems have the potential to deliver volumetric operator independent tissue property images of limbs with non-ionizing and portable hardware platforms. This work addresses the algorithmic challenges of imaging the sound speed of bone and soft tissue by combining FWI with LS regularization and travel time methods to recover soft tissue and bone sound speed with improved accuracy and reduced soft tissue artifacts when compared to conventional FWI. The value of leveraging LS and travel time methods is realized by evidence of improved bone geometry estimates as well as promising convergence properties and reduced risk of final model errors due to un-modeled shear wave propagation. Ex vivo bulk measurements of sound speed and MRI cross-sections validates the final inversion results.


Subject(s)
Cortical Bone , Sound , Artifacts , Bone and Bones/diagnostic imaging , Phantoms, Imaging , Ultrasonography
3.
Ultrasonics ; 114: 106393, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33588114

ABSTRACT

Quantitative ultrasound (QUS) has emerged as a viable tool in diagnosing and staging the onset and progression of various diseases. Within the field of QUS, shear wave elastography (SWE) has emerged as the clinical standard for quantifying and correlating the stiffness of tissue to its underlying pathology. Despite its widespread use, SWE suffers from drawbacks that limit its widespread clinical use; among these are low-frame rates, long settling times, and high sensitivity to operating conditions. Longitudinal speed of sound (SOS) has emerged as a viable alternative to SWE. We propose a framework to obtain 2D sound speed maps using a commercial ultrasound probe. A commercial ultrasound probe is localized in space and used to scan a domain of interest from multiple vantage points; the use of a reflector at the far end of the domain allows us to measure the round trip travel times to and from it. The known locations of the probe and the measured travel times are used to estimate the depth and inclination of the reflector as well as the unknown sound speed map. The use of multiple looks increases the effective aperture of the ultrasound probe and allows for a higher fidelity reconstruction of sound speed maps. We validate the framework using simulated and experimental data and propose a rigorous framework to quantify the uncertainty of the estimated sound speed maps.

SELECTION OF CITATIONS
SEARCH DETAIL
...