Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 7(1): 165, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28279018

ABSTRACT

The objective of this study was to evaluate the potential value of ultrasound (US) shear wave elastography (SWE) in assessing the relative change in elastic modulus in colorectal adenocarcinoma xenograft models in vivo and investigate any correlation with histological analysis. We sought to test whether non-invasive evaluation of tissue stiffness is indicative of pathological tumour changes and can be used to monitor therapeutic efficacy. US-SWE was performed in tumour xenografts in 15 NCr nude immunodeficient mice, which were treated with either the cytotoxic drug, Irinotecan, or saline as control. Ten tumours were imaged 48 hours post-treatment and five tumours were imaged for up to five times after treatment. All tumours were harvested for histological analysis and comparison with elasticity measurements. Elastic (Young's) modulus prior to treatment was correlated with tumour volume (r = 0.37, p = 0.008). Irinotecan administration caused significant delay in the tumour growth (p = 0.02) when compared to control, but no significant difference in elastic modulus was detected. Histological analysis revealed a significant correlation between tumour necrosis and elastic modulus (r = -0.73, p = 0.026). SWE measurement provided complimentary information to other imaging modalities and could indicate potential changes in the mechanical properties of tumours, which in turn could be related to the stages of tumour development.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/analogs & derivatives , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Elasticity Imaging Techniques/methods , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Cell Line, Tumor , Colorectal Neoplasms/pathology , Elastic Modulus , Humans , Irinotecan , Mice, Nude , Random Allocation , Treatment Outcome , Tumor Burden , Ultrasonic Waves , Xenograft Model Antitumor Assays
2.
PLoS One ; 12(1): e0169664, 2017.
Article in English | MEDLINE | ID: mdl-28107368

ABSTRACT

Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184µm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms.


Subject(s)
Elasticity Imaging Techniques/methods , Tomography, Optical Coherence/methods , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL