Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 75: 128951, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36031020

ABSTRACT

We report herein, the discovery of BMS-737 (compound 33) as a potent, non-steroidal, reversible small molecule inhibitor demonstrating 11-fold selectivity for CYP17 lyase over CYP17 hydroxylase, as well as a clean xenobiotic CYP profile for the treatment of castration-resistant prostate cancer (CRPC). Extensive SAR studies on the initial lead 1 at three different regions of the molecule resulted in the identification of BMS-737, which demonstrated a robust 83% lowering of testosterone without any significant perturbation of the mineralocorticoid and glucocorticoid levels in cynomologous monkeys in a 1-day PK/PD study.


Subject(s)
Lyases , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Glucocorticoids , Humans , Male , Mineralocorticoids , Prostatic Neoplasms, Castration-Resistant/drug therapy , Steroid 17-alpha-Hydroxylase , Testosterone , Xenobiotics
2.
J Med Chem ; 64(1): 677-694, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33370104

ABSTRACT

A search for structurally diversified Tyk2 JH2 ligands from 6 (BMS-986165), a pyridazine carboxamide-derived Tyk2 JH2 ligand as a clinical Tyk2 inhibitor currently in late development for the treatment of psoriasis, began with a survey of six-membered heteroaryl groups in place of the N-methyl triazolyl moiety in 6. The X-ray co-crystal structure of an early lead (12) revealed a potential new binding pocket. Exploration of the new pocket resulted in two frontrunners for a clinical candidate. The potential hydrogen bonding interaction with Thr599 in the pocket was achieved with a tertiary amide moiety, confirmed by the X-ray co-crystal structure of 29. When the diversity search was extended to nicotinamides, a single fluorine atom addition was found to significantly enhance the permeability, which directly led to the discovery of 7 (BMS-986202) as a clinical Tyk2 inhibitor that binds to Tyk2 JH2. The preclinical studies of 7, including efficacy studies in mouse models of IL-23-driven acanthosis, anti-CD40-induced colitis, and spontaneous lupus, will also be presented.


Subject(s)
Cyclopropanes/pharmacology , Drug Discovery , Oxazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , TYK2 Kinase/antagonists & inhibitors , Animals , Catalysis , Crystallography, X-Ray , Cyclopropanes/chemistry , Humans , Mice , Oxazoles/chemistry , Protein Binding , Protein Kinase Inhibitors/chemistry , Psoriasis/drug therapy , Structure-Activity Relationship , TYK2 Kinase/metabolism
3.
J Med Chem ; 62(7): 3228-3250, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30893553

ABSTRACT

Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase, is a member of the Tec family of kinases and is essential for B cell receptor (BCR) mediated signaling. BTK also plays a critical role in the downstream signaling pathways for the Fcγ receptor in monocytes, the Fcε receptor in granulocytes, and the RANK receptor in osteoclasts. As a result, pharmacological inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as rheumatoid arthritis and lupus. This article will outline the evolution of our strategy to identify a covalent, irreversible inhibitor of BTK that has the intrinsic potency, selectivity, and pharmacokinetic properties necessary to provide a rapid rate of inactivation systemically following a very low dose. With excellent in vivo efficacy and a very desirable tolerability profile, 5a (branebrutinib, BMS-986195) has advanced into clinical studies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Indoles/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Arthritis, Rheumatoid/drug therapy , Dose-Response Relationship, Drug , Humans , Indoles/pharmacokinetics , Indoles/therapeutic use , Inhibitory Concentration 50 , Lupus Erythematosus, Systemic/drug therapy , Macaca fascicularis , Mice , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use
4.
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26819663

ABSTRACT

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

5.
J Pharm Sci ; 97(4): 1427-42, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17724660

ABSTRACT

A rapid solubility-screening assay was developed with a focus on Biopharmaceutic Classification Scheme (BCS) class II drug solubility in animal and simulated human gastrointestinal (GI) fluids. The assay enables biologically promising drug leads to be evaluated for solubility limitations earlier in the drug development process, minimizes GI fluid needs, and produces in vitro solubility information with potential in vivo implications. A number of BCS II drugs were dissolved in DMSO at approximately 40 mM, and robotically distributed to a 96-well plate. The DMSO was evaporated and drugs were equilibrated with selected GI fluids, both fed and fasted states. After equilibration, precipitated wells were subjected to HPLC analysis. A spreadsheet calculated solubility automatically from HPLC output. Intra-day, inter-day, and inter-plate reproducibility were within 15% RSTD for the tested drugs with the primary source of variability being injection precision of our injector system. The reported solubility from screening assays was well correlated with literature data (r(2) = 0.80) with a slope of 0.86 and (r(2) = 0.99) with a slope of 0.89. This screening assay converts conventional solubility measurements to a 96-well format for increased throughput (>12 samples/h), reduces fluid needs, and minimizes drug consumption.


Subject(s)
Biopharmaceutics/methods , Pharmaceutical Preparations/classification , Solubility , Animals , Body Fluids/metabolism , Filtration , Gastrointestinal Tract/metabolism , Humans , Reproducibility of Results
6.
J Pharm Sci ; 97(6): 2080-90, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17879292

ABSTRACT

A rapid-throughput screening assay was developed to estimate the salt solubility parameter, K(SP), with a minimal quantity of drug. This assay allows for early evaluation of salt limited solubility with a large number of counter-ions and biologically promising drug leads. Drugs dissolved (typically 10 mM) in DMSO are robotically distributed to a 96-well plate. DMSO is evaporated, and drugs are equilibrated with various acids at different concentrations (typically <1 M) to yield final total drug concentrations around 2.5 mM. The plate is checked for precipitation. Filtrates from only those precipitated wells were subjected to rapid gradient HPLC analysis. An iterative procedure is employed to calculate all species concentrations based on mass and charge balance equations. The apparent K(SP) values assuming 1:1 stoichiometry are determined from counter-ion and ionized drug activities. A correlation coefficient >0.975 for eight drugs totaling 16 salts is reported. Intra-day and inter-day reproducibility was <10%. Conventional apparent K(SP) measurements were translated to 96-well format for increased throughput and minimal drug consumption (typically 10 mg) to evaluate at least eight different counter-ions. Although the current protocol estimates K(SP) from 10(-3) to 10(-7) M, the dynamic range of the assay could be expanded by adjusting drug and counter-ion concentrations.


Subject(s)
Microchemistry , Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/methods , Chemical Precipitation , Chromatography, High Pressure Liquid , Dimethyl Sulfoxide/chemistry , Hydrogen-Ion Concentration , Models, Chemical , Nephelometry and Turbidimetry , Reproducibility of Results , Robotics , Solubility , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...