Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 459: 114766, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38048913

ABSTRACT

Dopamine (DA) D1 and D2 receptors (Rs) are critical for cognitive functioning. D1 positive allosteric modulators (D1PAMs) activate D1Rs without desensitization or an inverted U-shaped dose response curve. DETQ, [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one] is highly selective for the human D1Rs as shown in humanized D1R knock-in (hD1Ki) mice. Here, we have ascertained the efficacy of DETQ in aged [13-23-month-old (mo)] hD1Ki mice and their corresponding age-matched wild-type (WT; C57BL/6NTac) controls. We found that in aged mice, DETQ, given acutely, subchronically, and chronically, rescued both novel object recognition memory and social behaviors, using novel object recognition (NOR) and social interaction (SI) tasks, respectively without any adverse effect on body weight or mortality. We have also shown, using in vivo microdialysis, a significant decrease in basal DA and norepinephrine, increase in glutamate (Glu) and gamma-amino butyric acid (GABA) efflux with no significant changes in acetylcholine (ACh) levels in aged vs young mice. In young and aged hD1Ki mice, DETQ, acutely and subchronically increased ACh in the medial prefrontal cortex and hippocampal regions in aged hD1Ki mice without affecting Glu. These results suggest that the D1PAM mechanism is of interest as potential treatment for cognitive and social behavioral deficits in neuropsychiatric disorders including but not restricted to neurodegenerative disorders, such as Parkinson's disease.


Subject(s)
Acetylcholine , Social Interaction , Mice , Humans , Animals , Aged , Infant , Mice, Inbred C57BL , Dopamine , Glutamic Acid , Hippocampus/metabolism , Receptors, Dopamine D1/metabolism , Cognition
2.
Behav Brain Res ; 454: 114614, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37572758

ABSTRACT

The serotonin (5-HT)2 C receptor(R) is a widely distributed G-protein-coupled receptor, expressed abundantly in the central nervous system. Alstonine is a natural product that has significant properties of atypical antipsychotic drugs (AAPDs), in part attributed to 5-HT2 CR agonism. Based on alstonine, we developed NU-1223, a simplified ß carboline analog of alstonine, which shows efficacies comparable to alstonine and to other 5-HT2 CR agonists, Ro-60-0175 and lorcaserin. The 5-HT2 CR antagonism of some APDs, including olanzapine, contributes to weight gain, a major side effect which limits its tolerability, while the 5-HT2 CR agonists and/or modulators, may minimize weight gain. We used the well-established rodent subchronic phencyclidine (PCP) model to test the efficacy of NU-1223 on episodic memory, using novel object recognition (NOR) task, positive (locomotor activity), and negative symptoms (social interaction) of schizophrenia (SCH). We found that NU-1223 produced both transient and prolonged rescue of the subchronic PCP-induced deficits in NOR and SI. Further, NU-1223, but not Ro-60-0175, blocked PCP and amphetamine (AMPH)-induced increase in LMA in subchronic PCP mice. These transient efficacies in LMA were blocked by the 5-HT2 CR antagonist, SB242084. Sub-chronic NU-1223 treatment rescued NOR and SI deficits in subchronic PCP mice for at least 39 days after 3 days injection. Chronic treatment with NU-1223, ip, twice a day for 21 days, did not increase average body weight vs olanzapine. These findings clearly indicate NU-1223 as a class of small molecules with a possible 5-HT2 CR-agonist-like mechanism of action, attributing to its efficacy. Additional in-depth receptor mechanistic studies are warranted, as this small molecule, both transiently and chronically rescued PCP-induced deficits. Furthermore, NU-1223 did not induce weight gain post long-term administrations vs AAPDs such as olanzapine, making NU-1223 a putative therapeutic compound for SCH.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Mice , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Olanzapine/pharmacology , Phencyclidine/pharmacology , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Serotonin/metabolism , Serotonin/pharmacology , Secologanin Tryptamine Alkaloids/pharmacology , Secologanin Tryptamine Alkaloids/therapeutic use
3.
Behav Brain Res ; 432: 113964, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35718230

ABSTRACT

Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.


Subject(s)
Ketamine , Phencyclidine , Animals , Ketamine/pharmacology , Ketamine/therapeutic use , Mammals , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Mice , Oligopeptides/pharmacology , Phencyclidine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...