Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16588, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025925

ABSTRACT

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Subject(s)
Antifungal Agents , Plant Oils , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Rats , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Triazoles/administration & dosage , Triazoles/pharmacokinetics , Triazoles/chemistry , Triazoles/pharmacology , Nanoparticles/chemistry , Rats, Wistar , Candida albicans/drug effects , Invasive Fungal Infections/drug therapy , Aspergillus niger/drug effects , Micelles , Seeds/chemistry , Drug Liberation , Male , Drug Carriers/chemistry
2.
Article in English | MEDLINE | ID: mdl-37817658

ABSTRACT

A diabetic wound is one of the major complications arising from hyperglycemia, neuropathy, and oxidative stress in diabetic patients. Finding effective treatments for diabetic wounds has been difficult owing to the complex pathophysiology of diabetic wound environments. Chronic wounds are notoriously difficult to treat with conventional wound care methods. In recent years, polyphenols found in plants have received much interest as a potential treatment for diabetic wounds. Their key benefits are their safety and the fact that they act through many molecular routes to treat diabetic wounds. However, problems with their formulation development, including lipophilicity, light sensitivity, limited membrane permeability, rapid systemic elimination, and enzymatic degradation, prevented them from gaining clinical attention. This article highlights and discusses the mechanism of polyphenols and various polyphenol-based drug delivery systems used till now to treat diabetic wounds. The consideration that should be taken in polyphenols-based nano-formulations and their prospect for diabetic wounds are also discussed briefly.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Humans , Biocompatible Materials/pharmacology , Diabetes Mellitus/drug therapy , Wound Healing , Drug Delivery Systems
3.
Saudi J Biol Sci ; 30(9): 103778, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37663396

ABSTRACT

Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of -20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0-24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.

4.
ScientificWorldJournal ; 2022: 1552602, 2022.
Article in English | MEDLINE | ID: mdl-36479553

ABSTRACT

One of the most important issues for bitter-tasting drugs such as levocetirizine dihydrochloride (LCD) is the production of palatable dosage forms. LCD also has a delayed onset of action following oral administration. In this study, solid dispersed fast-dissolving films (FDFs) of LCD using the solvent casting method for oral application were prepared and evaluated. The FDF is composed of HPMC as the film forming polymer and different types of superdisintegrants (sodium starch glycolate, croscarmellose sodium, or crospovidone). FDF containing crospovidone showed the highest percentage release of the drug (100.54% ± 1.47 within 3 min.) and was chosen for fabricating into palatable solid dispersed FDFs using different ratios of gelatine. The results of Raman and FTIR revealed that the drug's crystalline structure has been disrupted, and the drug has intermolecular hydrogen bonds with gelatine. The solid dispersed FDF (LF-7), which contained the drug in the form of a 1 : 1 solid dispersion with gelatine, showed a rapid in vitro disintegration (25 seconds) and a burst release of the drug (99.22% ± 2.22 within one min). The in vivo studies were conducted on human participants and showed a significant (p < 0.05) reduction in disintegration time (9.43 ± 2.16 sec.) and higher taste masking ability of the solid dispersed FDF (LF-7) compared to the nonsolid dispersed FDF (LF-4). The stability studies indicated that the prepared FDF remained stable over three months. Overall, FDFs of levocetirizine dihydrochloride with a palatable and rapid onset of action were developed to relieve allergic symptoms.


Subject(s)
Humans
5.
Int J Biol Macromol ; 221: 435-445, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36067850

ABSTRACT

This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 µg ml-1) as compared to drug suspension (90.02 µg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.


Subject(s)
Chitosan , Glioblastoma , Nanoparticles , Animals , Rats , Administration, Intranasal , Chitosan/metabolism , Carmustine/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Drug Carriers/metabolism , Brain/metabolism , Particle Size , Rats, Wistar , Drug Delivery Systems/methods
6.
Article in English | MEDLINE | ID: mdl-33880073

ABSTRACT

Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.

SELECTION OF CITATIONS
SEARCH DETAIL
...