Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Sci Rep ; 14(1): 10947, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740811

ABSTRACT

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Subject(s)
Aeromonas salmonicida , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Fish Diseases , Salmo salar , Animals , Salmo salar/immunology , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Omega-3/pharmacology , Aeromonas salmonicida/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/virology , Head Kidney/immunology , Animal Feed , Soybean Oil/pharmacology , Fish Oils/pharmacology , Aquaculture/methods
2.
Exp Clin Transplant ; 22(Suppl 1): 315-322, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38385418

ABSTRACT

OBJECTIVES: The benefits of reduction in low-density lipoprotein cholesterol by evolocumab by nearly 60% has not been evaluated among kidney transplant recipients to our knowledge. We assessed the efficacy and safety of evolocumab, a proprotein convertase subtilisin/kexin-9 inhibitor, in reducing lipids and cardiovascular events among kidney transplant recipients in a randomized controlled study. MATERIALS AND METHODS: Between June 2017 and June 2019, we enrolled 197 kidney transplant recipients with high cardiovascular risk score (>20). Patients who received evolocumab (140 mg/2 weeks) comprised group 1 (n = 98), and patients maintained on statin therapy comprised group 2 (n = 99). We followed patients clinically and with necessary laboratory investigations over 24 months. RESULTS: The 2 groups had comparable demographic characteristics (P > .05). Before enrollment in the study, smokers were significantly more prevalent in group 1, whereas posttransplant diabetes mellitus was more prevalent in group 2 (P = .033). Moreover, baseline serum creatinine was higher in group 1, whereas immunosuppression was equivalent in both groups (P > .05). We found no significant differences between the 2 groups concerning cardiovascular events, and both graft and patient outcomes were comparable (P > .05). The higher baseline cholesterol in group 1 (5.5 vs 4.7 mmol/L; P < .001) decreased significantly after 3 months and thereafter (P = .031) compared with levels in group 2 and baseline values (P < .001). We reported 2 cases of acute myocardial infarction and 1 atrial fibrillation in group 2. CONCLUSIONS: Proprotein convertase subtilisin/kexin-9 inhibitors, as an added therapy to statins, are safe and effective in treating hypercholesterolemia after kidney transplant. Evolocumab can minimize cardiovascular events after kidney transplant in patients with high events at baseline. Longer-term trials with larger number of patients are needed to confirm its beneficial effects on cardiovascular complications and patient and graft survival.


Subject(s)
Cardiovascular Diseases , Hypercholesterolemia , Kidney Transplantation , PCSK9 Inhibitors , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/prevention & control , Cholesterol, LDL , Heart Disease Risk Factors , Hypercholesterolemia/diagnosis , Hypercholesterolemia/drug therapy , Kidney Transplantation/adverse effects , PCSK9 Inhibitors/adverse effects , Proprotein Convertases , Risk Factors , Subtilisin
3.
BMC Vet Res ; 20(1): 28, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245745

ABSTRACT

BACKGROUND: Attempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks. RESULTS: Body weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups. CONCLUSION: Exogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers' diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens' diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Oligosaccharides , Animals , Interleukin-2 , Interleukin-10 , Interleukin-18 , Muramidase , Diet/veterinary , Dietary Supplements , Body Weight , Animal Feed/analysis
4.
Pediatr Pulmonol ; 59(2): 465-471, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038166

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is an autosomal recessive disease. It affects multiple organ systems, including the liver, leading to CF-related liver disease (CFLD). It was noted that CFLD in Egyptian children with CF is more common than in non-Egyptian people with CF (pwCF). This study aimed to determine the incidence of CFLD and the potential risk factors for developing CFLD in Egyptian children. The correlation between CFLD and the various genotypes prevalent in Egyptian CF children will be discussed. In addition, comparison of CFLD in Egyptian and non-Egyptian CF patients will be presented. METHODS: This cross-sectional study included 50 pwCF from Ain Sham University's Pediatric Pulmonology Clinic in Children's Hospital, Cairo, Egypt. The sweat chloride test and genetic studies were done at the time of diagnosis. Additionally, all subjects underwent detailed history taking, laboratory investigations, clinical assessment, and pelvic abdominal ultrasound for evaluation of hepatic involvement. RESULTS: One-third of the Egyptian children with CF were found to have liver disease. The following independent risk factors for developing CFLD were identified as: male sex, severe genetic mutation (class I and II), long duration of CF disease, early onset of the CF, pancreatic insufficiency, as well as history of meconium ileus. In addition, diabetes mellitus and severe lung disease were proven to significantly increase the risk of developing CFLD. CONCLUSION: CFLD is common in Egyptian pwCF. CFLD's risk factors are similar to other reported research from other countries in the region.


Subject(s)
Cystic Fibrosis , Liver Diseases , Child , Humans , Male , Cystic Fibrosis/complications , Cystic Fibrosis/epidemiology , Cystic Fibrosis/genetics , Egypt/epidemiology , Cross-Sectional Studies , Liver Diseases/epidemiology , Liver Diseases/genetics , Risk Factors , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis
5.
Poult Sci ; 103(1): 103206, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980757

ABSTRACT

This study investigated the effects of nanomethionine (nano-meth) on performance, antioxidants, and gene expression of HSP70, HSP90 and Heat Shock factor-1 (HSF-1) from the liver, and TLR4 from the jejunum, of broiler chickens reared under normal temperatures or under heat stress. Three hundred 1-day-old chicks were randomly assigned to 5 treatment groups. Group 1 served as control. Under normal temperature, birds in group 2 received nano-meth (10 mL/L of drinking water) from d1 until the experiment ended. Group 3 birds were heat-stressed (HS) and did not receive any supplementation. Group 4 received nano-meth in the same dose from d1 old until experiment ended, and the birds were exposed to HS. Group 5 birds were HS and received supplementation of nano-meth during the HS period only. Nano-meth improved (P < 0.0001) final body weight, weight gain, feed conversion ratio, and also decreased (P < 0.0001) the effect of HS on growth performance. Reduction (P < 0.0001) in malondialdehyde and changes in antioxidant enzymes GPX and CAT activity indicated the antioxidant effect of nano-meth. Nano-meth supplementation caused an increase in the expression of HSP70 , HSP90 and HSF1, and a downregulation of TLR4 gene expression. Additionally, nano-meth-supplemented groups showed marked improvement in the histological liver structure, intestinal morphology and villus height compared to control or HS groups.


Subject(s)
Chickens , Transcriptome , Animals , Chickens/physiology , Toll-Like Receptor 4/metabolism , Antioxidants/metabolism , Heat-Shock Response , Dietary Supplements , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Diet/veterinary , Animal Feed/analysis
6.
Cytokine ; 173: 156433, 2024 01.
Article in English | MEDLINE | ID: mdl-37972479

ABSTRACT

Severe COVID-19 pneumonia is a principal cause of death due to cascade of hyper inflammatory condition that leading to lung damage. Therefore, an effective therapy to countercurrent the surge of uncontrolled inflammation is mandatory to propose. Anti-interlukin-6 receptor antagonist monoclonal therapy, tocilizumab (TCZ) showed potential results in COVID-19 patients. This study aimed to emphasize the factors associated with mortality in COVID-19 patients that treated with tocilizumab and may influence the level of serum IL-6. A retrospective cohort study included all patients with clinical parameters that pointed to presence of cytokines storm and treated with one or more doses of TCZ beside the regular protocol of COVID-19 pneumonia. The factors that influence the mortality in addition to the level of serum IL-6 were analyzed. A total of 377 patients were included, 69.5 % of them received only one dose of TCZ which started mainly at the third day of admission. The mortality rate was 29.44 %. Regardless the time of starting TCZ, just one dose was fair enough to prevent bad consequence; OR = 0.04, P = 0.001.However, in spite of protective action of TCZ, older age and female sex were significant risk factors for mortality, P = 0.001 and 0.01 respectively, as well heart disease. Moreover, increasing the level of neutrophil, AST and IL-6 were associated with bad prognosis. In the same line, treatment with ivermectin, chloroquine and remdesivir inversely affect the level of IL-6. Early treatments of COVID-19 pneumonia with at least one dose of tocilizumab minimized the fatality rate.


Subject(s)
COVID-19 , Humans , Female , SARS-CoV-2 , Cytokines , Retrospective Studies , Interleukin-6 , COVID-19 Drug Treatment , Prognosis
7.
Life Sci ; 338: 122362, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38141855

ABSTRACT

AIMS: Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS: Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS: MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE: MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.


Subject(s)
Flavones , Huntington Disease , Mitophagy , Animals , Rats , Apoptosis , Cytochromes c , Flavones/pharmacology , Huntington Disease/metabolism , Mechanistic Target of Rapamycin Complex 1 , Membrane Proteins , Molecular Docking Simulation , Phosphoproteins , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases , Ubiquitins/metabolism
8.
Sci Rep ; 13(1): 12556, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532715

ABSTRACT

Different driver mutations and/or chromosomal aberrations and dysregulated signaling interactions between leukemia cells and the immune microenvironment have been implicated in the development of T-cell acute lymphoblastic leukemia (T-ALL). To better understand changes in the bone marrow microenvironment and signaling pathways in pediatric T-ALL, bone marrows collected at diagnosis (Dx) and end of induction therapy (EOI) from 11 patients at a single center were profiled by single cell transcriptomics (10 Dx, 5 paired EOI, 1 relapse). T-ALL blasts were identified by comparison with healthy bone marrow cells. T-ALL blast-associated gene signature included SOX4, STMN1, JUN, HES4, CDK6, ARMH1 among the most significantly overexpressed genes, some of which are associated with poor prognosis in children with T-ALL. Transcriptome profiles of the blast cells exhibited significant inter-patient heterogeneity. Post induction therapy expression profiles of the immune cells revealed significant changes. Residual blast cells in MRD+ EOI samples exhibited significant upregulation (P < 0.01) of PD-1 and RhoGDI signaling pathways. Differences in cellular communication were noted in the presence of residual disease in T cell and hematopoietic stem cell compartments in the bone marrow. Together, these studies generate new insights and expand our understanding of the bone marrow landscape in pediatric T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptome , Bone Marrow , Recurrence , Bone Marrow Cells , Prognosis , Tumor Microenvironment/genetics , SOXC Transcription Factors
9.
Environ Sci Pollut Res Int ; 30(10): 26982-26997, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36372859

ABSTRACT

Ivermectin is the medication of choice for treating human onchocerciasis and is used in veterinary medicine to treat a variety of ectoparasites and endoparasites. This study was designed to investigate the effects of zinc nanoparticles (ZnNPs) on the fertility of male rabbits exposed to experimental ivermectin (IVM) intoxication. A total of 72 mature male rabbits were equally divided into 4 groups (n = 18). The first group (CTR) served as control; the second group (IVM) received subcutaneous injection of IVM (0.2 mg/kg body weight); the third group (ZnNPs) fed on zinc nanoparticles (60 mg/kg diet); and the fourth group (ZnNPs + IVM) were administered IVM and zinc nanoparticles at the same doses. The experiment lasted for 9 weeks. Results revealed that IVM-intoxicated rabbits showed impaired growth performance parameters, including body weight, total body weight gain (TBWG), total feed intake (TFI), and feed conversion ratio (FCR). Moreover, carcass characteristic and fertility parameters (including semen quality parameters and testosterone levels) were also impaired after IVM administration. Additionally, testicular malondialdehyde (MDA) and antioxidant (reduced glutathione, superoxide dismutase, catalase) levels as well as the histopathology and immunohistochemical expression of caspase 3 and PCNA in the testes and epididymis were detrimentally affected. On the contrary, ZnNP administration efficiently improved most of these parameters in IVM-intoxicated rabbits. In conclusion, ZnNPs exhibited promising ability for improving the growth and fertility status of rabbits and reducing the deleterious effects of IVM possibly through the suppression of apoptotic and oxidative pathways.


Subject(s)
Ivermectin , Metal Nanoparticles , Animals , Humans , Male , Rabbits , Apoptosis , Body Weight , Ivermectin/adverse effects , Ivermectin/toxicity , Metal Nanoparticles/therapeutic use , Oxidative Stress , Semen Analysis , Zinc/pharmacology , Zinc/therapeutic use
10.
Front Mol Biosci ; 9: 931548, 2022.
Article in English | MEDLINE | ID: mdl-36213116

ABSTRACT

We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.

11.
J Med Life ; 15(3): 350-358, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35449996

ABSTRACT

COVID-19 is a pandemic disease caused by SARS-CoV-2, which is an RNA virus similar to the hepatitis C virus (HCV) in the replication process. Sofosbuvir/ledipasvir is an approved drug to treat HCV infection. This study investigates the efficacy of Sofosbuvir/ledipasvir as a treatment for patients with moderate COVID-19 infection. This is a single-blinded parallel-randomized controlled trial. The participants were randomized equally into the intervention group that received Sofosbuvir/ledipasvir (S.L. group), and the control group received Oseltamivir, Hydroxychloroquine, and Azithromycin (OCH group). The primary outcomes were the cure rate over time and the incidence of serious adverse events. The secondary outcomes included the laboratory findings. 250 patients were divided equally into each group. Both groups were similar regarding gender, but age was higher in the S.L. group (p=0.001). In the S.L. group, 89 (71.2%) patients were cured, while only 51 (40.8%) patients were cured in the OCH group. The cure rate was significantly higher in the S.L. group (RR=1.75, p<0.001). Kaplan-Meir plot showed a considerably higher cure over time in the S.L. group (Log-rank test, p=0.032). There were no deaths in the S.L. group, but there were six deaths (4.8%) in the OCH group (RR=0.08, p=0.013). Seven patients (5.6%) in the S.L. group and six patients (4.8%) in the OCH group were admitted to the intensive care unit (ICU) (RR=1.17, P=0.776). There were no significant differences between treatment groups regarding total leukocyte and neutrophils count, lymph, and urea. Sofosbuvir/ledipasvir is suggestive of being effective in treating patients with moderate COVID-19 infection. Further studies are needed to compare Sofosbuvir/ledipasvir with new treatment protocols.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Hepatitis C , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzimidazoles , Drug Therapy, Combination , Egypt , Fluorenes , Genotype , Hepacivirus , Hepatitis C, Chronic/drug therapy , Humans , Ribavirin/adverse effects , SARS-CoV-2 , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Treatment Outcome , Uridine Monophosphate/adverse effects
12.
J Adv Vet Anim Res ; 9(1): 128-137, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35445126

ABSTRACT

Objective: We investigated the effects of a source of selenium [inorganic or nano-selenium (nano-Se)] on female V-line rabbits with or without injection of ivermectin (IVM). Material and Methods: Eighty four rabbits (12 weeks old) were randomly divided into 4 groups of 21 rabbits each with the basal diet supplemented as per the following treatments: G1 (control): inorganic Se at 0.3 mg/kg diet with no IVM injection; G2: inorganic Se with IVM injection; G3: nano-Se with no IVM injection; and G4: nano-Se with IVM injection. IVM was injected subcutaneously at 0.2 mg/kg body weight starting when the does were 14 weeks old and repeated weekly for five consecutive weeks. Results: Replacement of inorganic Se with nano-Se improved body weight and total body weight gain, total feed intake, average feed conversion ratio, and reproductive performance (age at puberty, number of service/conception, conception rate, number of kits/litter, and litter weight at birth). Similarly, sexual activity of does, serum estrogen levels, and serum levels of antioxidants (glutathione reduced, catalase, and malondialdehyde) increased in nano-Se-supplemented groups. Ivermectin treatment in inorganic Se-supplemented groups was detrimental to growth and reproductive performance, while these parameters improved in IVM-treated and nano-Se-supplemented groups. Conclusion: Nano-Se mitigated the negative effects of IVM treatment on the growth and reproductive performance of does.

13.
Front Immunol ; 13: 806484, 2022.
Article in English | MEDLINE | ID: mdl-35418993

ABSTRACT

Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.


Subject(s)
Gills , Salmo salar , Animals , Biomarkers/metabolism , Gills/metabolism , Liver/metabolism , PPAR gamma/metabolism , Salmo salar/genetics
14.
BMC Neurosci ; 23(1): 11, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35247984

ABSTRACT

BACKGROUND: Mitoxantrone has proved efficacy in treatment of multiple sclerosis (MS). The fact that physical exercise could slow down the progression of disease and improve performance is still a debatable issue, hence; we aimed at studying whether combining mitoxantrone with exercise is of value in the management of MS. METHODS: Thirty-six male rats were divided into sedentary and exercised groups. During a 14-day habituation period rats were subjected to exercise training on a rotarod (30 min/day) before Experimental Autoimmune Encephalomyelitis (EAE) induction and thereafter for 17 consecutive days. On day 13 after induction, EAE groups (exercised &sedentary) were divided into untreated and mitoxantrone treated ones. Disease development was evaluated by motor performance and EAE score. Cerebrospinal fluid (CSF) was used for biochemical analysis. Brain stem and cerebellum were examined histopathological and immunohistochemically. RESULTS: Exercise training alone did not add a significant value to the studied parameters, except for reducing Foxp3 immunoreactivity in EAE group and caspase-3 in the mitoxantrone treated group. Unexpectedly, exercise worsened the mitoxantrone effect on EAE score, Bcl2 and Bax. Mitoxantrone alone decreased EAE/demyelination/inflammation scores, Foxp3 immunoreactivity, and interleukin-6, while increased the re-myelination marker BDNF without any change in tumor necrosis factor-α. It clearly interrupted the apoptotic pathway in brain stem, but worsened EAE mediated changes of the anti-apoptotic Bcl2 and pro-apoptotic marker Bax in the CSF. CONCLUSIONS: The neuroprotective effect of mitoxantrone was related with remyelination, immunosuppressive and anti-inflammatory potentials. Exercise training did not show added value to mitoxantrone, in contrast, it disrupts the apoptotic pathway.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Forkhead Transcription Factors , Male , Mice , Mice, Inbred C57BL , Mitoxantrone/pharmacology , Multiple Sclerosis/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Rats , bcl-2-Associated X Protein
15.
Animals (Basel) ; 11(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34438756

ABSTRACT

Quercetin was fed to groups of broiler chickens at concentrations of 200, 400, and 800 ppm, and a control group was supplemented with a basal diet. Results revealed that quercetin dietary supplementation numerically improved the growth performance traits and significantly increased (p < 0.05) the European production efficiency factor (EPEF) in the 200 ppm group. The total coliforms and Clostridium perfringens were decreased (p < 0.05) in quercetin-supplemented groups. Conversely, Lactobacillus counts were increased (p < 0.05), due to improvement of the gut microbiota environment in quercetin-supplemented groups. Moreover, the mRNA expression of intestinal Cu/Zn-superoxide dismutase (SOD1), glutathione peroxidase (GSH-Px) and nutritional transporters, including glucose transporter 2 (GLUT2), peptide transporter 1 (PEPT1), and fatty acid synthase (FAS) genes, were significantly upregulated in quercetin-supplemented groups. Quercetin enhanced intestinal morphometry. We can suggest quercetin supplementation in broiler chickens by levels between 200 and 400 ppm to enhance their development and gut environment.

16.
Virus Res ; 302: 198472, 2021 09.
Article in English | MEDLINE | ID: mdl-34118359

ABSTRACT

The human ß-coronavirus SARS-CoV-2 epidemic started in late December 2019 in Wuhan, China. It causes Covid-19 disease which has become pandemic. Each of the five-known human ß-coronaviruses has four major structural proteins (E, M, N and S) and 16 non-structural proteins encoded by ORF1a and ORF1b together (ORF1ab) that are involved in virus pathogenicity and infectivity. Here, we performed detailed positive selection analyses for those six genes among the four previously known human ß-coronaviruses and within 38 SARS-CoV-2 genomes to assess signatures of adaptive evolution using maximum likelihood approaches. Our results suggest that three genes (E, S and ORF1ab genes) are under strong signatures of positive selection among human ß-coronavirus, influencing codons that are located in functional important protein domains. The E protein-coding gene showed signatures of positive selection in two sites, Asp 66 and Ser 68, located inside a putative transmembrane α-helical domain C-terminal part, which is preferentially composed by hydrophilic residues. Such Asp and Ser sites substitutions (hydrophilic residues) increase the stability of the transmembrane domain in SARS-CoV-2. Moreover, substitutions in the spike (S) protein S1 N-terminal domain have been found, all of them were located on the S protein surface, suggesting their importance in viral transmissibility and survival. Furthermore, evidence of strong positive selection was detected in three of the SARS-CoV-2 nonstructural proteins (NSP1, NSP3, NSP16), which are encoded by ORF1ab and play vital roles in suppressing host translation machinery, viral replication and transcription and inhibiting the host immune response. These results are insightful to assess the role of positive selection in the SARS-CoV-2 encoded proteins, which will allow to better understand the virulent pathogenicity of the virus and potentially identifying targets for drug or vaccine strategy design.


Subject(s)
COVID-19/virology , Coronavirus Envelope Proteins/genetics , Pandemics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics , Amino Acid Substitution , COVID-19/epidemiology , Humans , Polyproteins/genetics , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virulence/genetics , Virus Replication
17.
Environ Sci Pollut Res Int ; 28(41): 58322-58330, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34117542

ABSTRACT

This study was aimed at elucidating the protective effects of 18ß-glycyrrhetinic acid (18ßGA) against acrylamide (Acr)-induced cellular damage in diabetic rats. Rats were randomly assigned into eight groups (n = 8) following 12 h of fasting: control group, a single dose of 50 mg/kg streptozotocin (STZ) intraperitoneally (diabetic group), 50 mg/kg 18ßGA orally after 2 weeks from STZ injection (18ßGA group), 20 mg/kg Acr after 1month from STZ injection (Acr group), STZ plus Acr (STZ-Acr group), STZ plus 18ßGA (STZ-18ßGA group), Acr plus 18ßGA (Acr-18ßGA group), or STZ plus Acr plus 18ßGA (STZ-Acr-18ßGA group). Administration of 18ßGA alone increased GSH, GSH-PX, SOD, and CAT in both liver and kidneys. While STZ injection was associated with diabetic and oxidative stress changes as indicated by the higher serum glucose, cholesterol, creatinine, IL-1ß, IL-6, TNF-α, and antioxidant enzyme activities, together with increased lipid peroxides and decreased antioxidant biomarkers in the liver and kidneys. Similarly, the co-administration of STZ and Acr was associated with similar, more augmented effects, compared to STZ alone. The administration of 18ßGA normalized STZ and Acr-induced elevations in oxidative defense variables in the liver and kidney tissues and blood biomarkers. Thus, our study demonstrated that the damaging effects of Acr were more exaggerated in diabetic rats. Furthermore, it showed the ability of 18ßGA to inhibit reactive oxygen species generation and restore the antioxidant defenses in diabetic rats with Acr-induced liver and kidney cytotoxicity.


Subject(s)
Diabetes Mellitus, Experimental , Glycyrrhetinic Acid , Acrylamide/toxicity , Animals , Antioxidants , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Oxidative Stress , Rats
18.
Life Sci ; 277: 119459, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33836162

ABSTRACT

AIMS: The fact that physical activity besides central cholinergic enhancement contributes in improving neuronal function and spastic plasticity, recommends the use of the anticholinesterase and cholinergic drug galantamine with/without exercise in the management of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MATERIALS AND METHODS: Sedentary and 14 days exercised male Sprague Dawley rats were subjected to EAE. Hereafter, exercised rats continued on rotarod for 30 min for 17 consecutive days. At the onset of symptoms (day 13), EAE sedentary/exercised groups were subdivided into untreated and post-treated with galantamine. The disease progression was assessed by EAE score, motor performance, and biochemically using cerebrospinal fluid (CSF). Cerebellum and brain stem samples were used for histopathology and immunohistochemistry analysis. KEY FINDINGS: Galantamine decreased EAE score of sedentary/exercised rats and enhanced their motor performance. Galantamine with/without exercise inhibited CSF levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6), and Bcl-2-associated X protein (Bax), besides caspase-3 and forkhead box P3 (Foxp3) expression in the brain stem. Contrariwise, it has elevated CSF levels of brain derived neurotrophic factor (BDNF) and B-cell lymphoma (Bcl-2) and enhanced remyelination of cerebral neurons. Noteworthy, exercise boosted the drug effect on Bcl-2 and Bax. SIGNIFICANCE: The neuroprotective effect of galantamine against EAE was associated with anti-inflammatory and anti-apoptotic potentials, along with increasing BDNF and remyelination. It also normalized regulatory T-cells levels in the brain stem. The impact of the add-on of exercise was markedly manifested in reducing neuronal apoptosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Galantamine/pharmacology , Animals , Apoptosis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Galantamine/metabolism , Male , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Neurons/pathology , Neuroprotection , Neuroprotective Agents/pharmacology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Physical Exertion/physiology , Rats , Rats, Sprague-Dawley
19.
Clin Exp Pharmacol Physiol ; 48(5): 811-819, 2021 05.
Article in English | MEDLINE | ID: mdl-33590494

ABSTRACT

The usefulness of cyclophosphamide (CP) in the treatment of multiple human malignancies and immunological diseases is hindered by the danger of developing nephrotoxicity. The toxic metabolites of CP are suggested to be responsible for oxidative stress resulted from the production of reactive oxygen species (ROS) and stimulation of lipid peroxidation. Nebivolol (NEB) is a third-generation selective B1 adrenoceptor antagonist, but it has also various pharmacological properties such as anti-inflammation, anti-apoptotic, and antioxidant activities. Thus, the present study aims to explore the potential protective effect of NEB against CP-induced nephrotoxicity. A cumulative dose of CP (75 mg/kg) was administered to albino rats by intraperitoneal injection. The protective effect of NEB was investigated by co-administration of NEB (10 mg/kg orally daily). Administration of NEB with CP significantly improved renal functions and reduced the oxidative renal changes induced by CP injection. Co-administration of NEB ameliorated apoptosis and inflammatory markers that were markedly exaggerated by CP. Our results indicated that NEB could be used as a protective agent against CP-induced nephrotoxicity.


Subject(s)
Nebivolol , Animals , Apoptosis , Cyclophosphamide , Oxidative Stress , Rats
20.
Front Immunol ; 11: 567838, 2020.
Article in English | MEDLINE | ID: mdl-33193341

ABSTRACT

Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.


Subject(s)
Adaptive Immunity/genetics , Fish Diseases/genetics , Fish Diseases/microbiology , Gene Expression Profiling , Immunity, Innate/genetics , Salmo salar/genetics , Salmo salar/microbiology , Transcriptome , Animals , Computational Biology/methods , Gene Expression Profiling/methods , Gene Ontology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Renibacterium , Reproducibility of Results , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...