Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 80: 101992, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462384

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis and a degenerative joint cartilage disease that is the most common cause of disability in the world among the elderly. It leads to social, psychological, and economic costs with financial consequences. The principles of OA treatment are to reduce pain and stiffness as well as maintain function. In recent years, due to a better understanding of the underlying pathophysiology of OA, a number of potential therapeutic advances have been made, which include tissue engineering, immune system manipulation, surgical technique, pharmacological, and non-pharmacological treatments. Despite this, there is still no certain cure for OA, and different OA treatments are usually considered in relation to the stage of the disease. The purpose of the present review is to summarize and discuss the latest results of new treatments for OA and potential targets for future research.


Subject(s)
Osteoarthritis , Humans , Aged , Osteoarthritis/therapy , Tissue Engineering
2.
J Dent (Shiraz) ; 23(2 Suppl): 349-360, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36588966

ABSTRACT

Statement of the Problem: The administration of both platelet rich plasma (PRP) and silicon dioxide (SiO2) to the bone defects accelerates bone repair and regeneration. Appli-cation of both of them may show synergistic regenerative effects. Purpose: Our objective was to evaluate the possible synergistic osteogenic effects of PRP and SiO2 by injecting them using an ad hoc device. Materials and Method: In this experimental study, PRP/SiO2 scaffolds were fabricated by in situ casting method with the help of CaCl2 as the gelation factor and alginate as the stroma; and then, the biodegradability and spatial arrangement were assessed. The injecta-ble scaffold was introduced into the 40 rabbit mandibular defects by an ad hoc two-channel injecting device. Five defects received PRP/SiO2/alginate as the treatment; the other sets of defects were treated by PRP/alginate, SiO2/alginate, and the last five defects served as the control groups by getting only alginate injections. The osteogenicity of the scaffolds was evaluated by radiological and histological procedures; they were then compared with each other. Analysis of variance and least significant difference tests were used to analyze the data. Results: The SiO2-treated group showed a significant higher bone area compared to PRP/ SiO2-treated groups on day 40 (p= 0.013). The number of osteocytes was higher in SiO2-treated than the control groups on both 20 and 40 days (p= 0.032 and 0.022, respectively). The number of osteoclast was also higher in SiO2-treated than PRP-treated group (p= 0.028). In addition, the cells of this group had just started to create Haversian systems in newly formed bone tissues. Conclusion: Silica demonstrated a superior osteogenic activity over PRP in both short and long term periods. Evidently, they showed no synergistic regenerative effects. Our ad hoc device was efficiently capable of inserting the scaffolds into the injured sites with no diffi-culties or complications.

3.
J Biomed Mater Res B Appl Biomater ; 109(1): 19-32, 2021 01.
Article in English | MEDLINE | ID: mdl-32627321

ABSTRACT

Bone regeneration can be possible through grafts or engineered bone replacement when bone defects are larger than the critical size. Decellularized bone extracellular matrix (ECM) is an alternative that is able to accelerate tissue regeneration, while decellularization protocols influence engineered bone quality. The objective of this study was to compare the quality of decellularized bone produced through different methods. Four decellularization methods were employed using (a) sodium lauryl ether sulfate (SLES), (b) sodium dodecyl sulfate (SDS) 0.5%, (c) SDS 1% and (d) trypsin/EDTA. All samples were then washed in triton X-100. DNA quantification, hematoxylin and eosin, and Hoechst staining showed that although DNA was depleted in all scaffolds, treatment with SLES led to a significantly lower DNA content. Glycosaminoglycan quantification, Raman confocal microscopy, alcian blue and PAS staining exhibited higher carbohydrate retention in the scaffolds treated with SLES and SDS 0.5%. Raman spectra, scanning electron microscopy and trichrom Masson staining showed more collagen content in SLES and SDS-treated scaffolds compared to trypsin/EDTA-treated scaffolds. Therefore, although trypsin/EDTA could efficiently decellularize the scaffolds, it washed out the ECM contents. Also, both MTT and attachment tests showed a significantly higher cell viability in SLES-treated scaffolds. Raman spectra revealed that while the first washing procedure did not remove SLES traces in the scaffolds, excessive washing reduced ECM contents. In conclusion, SLES and, to a lesser degree, SDS 0.5% protocols could efficiently preserve ultrastructure and ECM constituents of decellularized bone tissue and can thus be suggested as nontoxic and safe protocols for bone regeneration.


Subject(s)
Bone and Bones/chemistry , Decellularized Extracellular Matrix/chemistry , Minerals/chemistry , Scapula/chemistry , Tissue Scaffolds/chemistry , Animals , Biological Products/chemistry , Cattle , Cell Adhesion , Cell Proliferation , Collagen/chemistry , DNA/chemistry , Edetic Acid/chemistry , Glycosaminoglycans/chemistry , Humans , Octoxynol/chemistry , Sodium Dodecyl Sulfate/chemistry , Staining and Labeling , Surface Properties , Tissue Engineering , Trypsin/chemistry
4.
J Transl Med ; 18(1): 361, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32962683

ABSTRACT

BACKGROUND: Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. METHODS: The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. RESULTS: The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB + HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB + HA and ECV-treated groups. CONCLUSIONS: The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.


Subject(s)
Durapatite , Extracellular Vesicles , Animals , Bone Matrix , Extracellular Matrix , Rabbits , Sheep , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...