Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Angew Chem Int Ed Engl ; 60(41): 22126-22147, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34018297

ABSTRACT

Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.


Subject(s)
Xenon/chemistry , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
2.
Magn Reson Med ; 86(3): 1187-1193, 2021 09.
Article in English | MEDLINE | ID: mdl-33837550

ABSTRACT

PURPOSE: To investigate the dependence of dissolved 129 Xe chemical shift on the fraction of inhaled oxygen, Fi O2 , in the lungs of healthy rats. METHODS: The chemical shifts of 129 Xe dissolved in red blood cells, δRBC , and blood plasma and/or tissue, δPlasma , were measured using MRS in 12 Sprague Dawley rats mechanically ventilated at Fi O2 values of 0.14, 0.19, and 0.22. Regional effects on the chemical shifts were controlled using a chemical shift saturation recovery sequence with a fixed delay time. MRS was also performed at an Fi CO2 value of 0.085 to investigate the potential effect of the vascular response on δRBC and δPlasma . RESULTS: δRBC increased with decreasing Fi O2 (P = .0002), and δPlasma showed no dependence on Fi O2 (P = .23). δRBC at Fi CO2 = 0 (210.7 ppm ± 0.1) and at Fi CO2 = 0.085 (210.6 ppm ± 0.2) were not significantly different (P = .67). δPlasma at Fi CO2 = 0 (196.9 ppm ± 0.3) and at Fi CO2 = 0.085 (197.0 ppm ± 0.1) were also not significantly different (P = .81). CONCLUSION: Rat lung δRBC showed an inverse relationship to Fi O2 , opposite to the relationship previously demonstrated for in vitro human blood. Rat lung δRBC did not depend on Fi CO2 .


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Animals , Erythrocytes , Lung , Oxygen , Rats , Rats, Sprague-Dawley
3.
J Magn Reson ; 320: 106845, 2020 11.
Article in English | MEDLINE | ID: mdl-33070086

ABSTRACT

Continuous-flow spin exchange optical pumping (SEOP) with cryogenic accumulation is a powerful technique to generate multiple, large volumes of hyperpolarized (HP) 129Xe in rapid succession. It enables a range of studies, from dark matter tracking to preclinical and clinical MRI. Multiple analytical models based on first principles atomic physics and device-specific design features have been proposed for individual processes within HP 129Xe production. However, the modeling efforts have not yet integrated all the steps involved in practical, large volume HP 129Xe production process (e.g., alkali vapor generation, continuous-flow SEOP, and cryogenic accumulation). Here, we use a simplified analytical model that couples both SEOP and cryogenic accumulation, incorporating only two system-specific empirical parameters: the longitudinal relaxation time of the polycrystalline 129Xe "snow', T1snow, generated during cryogenic accumulation, and 2) the average Rb density during active, continuous-flow polarization. By fitting the model to polarization data collected from >140 L of 129Xe polarized across a range of flow and volume conditions, the estimates for Rb density and T1snow were 1.6 ± 0.1 × 1013 cm-3 and 84 ± 5 min, respectively - each notably less than expected based on previous literature. Together, these findings indicate that 1) earlier polarization predictions were hindered by miscalculated Rb densities, and 2) polarization is not optimized by maximizing SEOP efficiency with a low concentration 129Xe, but rather by using richer 129Xe-buffer gas blends that enable faster accumulation. Accordingly, modeling and experimentation revealed the optimal fraction of 129Xe, f, in the 129Xe-buffer gas blend was ~2%. Further, if coupled with modest increases in laser power, the model predicts liter volumes of HP 129Xe with polarizations exceeding 60% could be generated routinely in only tens of minutes.


Subject(s)
Magnetic Resonance Spectroscopy , Xenon Isotopes/chemical synthesis , Gases , Temperature
5.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L305-L312, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28473321

ABSTRACT

During lung inflation, airspace dimensions are affected nonlinearly by both alveolar expansion and recruitment, potentially confounding the identification of emphysematous lung by hyperpolarized helium-3 diffusion magnetic resonance imaging (HP MRI). This study aimed to characterize lung inflation over a broad range of inflation volume and pressure values in two different models of emphysema, as well as in normal lungs. Elastase-treated rats (n = 7) and healthy controls (n = 7) were imaged with HP MRI. Gradual inflation was achieved by incremental changes to both inflation volume and airway pressure. The apparent diffusion coefficient (ADC) was measured at each level of inflation and fitted to the corresponding airway pressures as the second-order response equation, with minimizing residue (χ2 < 0.001). A biphasic ADC response was detected, with an initial ADC increase followed by a decrease at airway pressures >18 cmH2O. Discrimination between treated and control rats was optimal when airway pressure was intermediate (between 10 and 11 cmH2O). Similar findings were confirmed in mice following long-term exposure to cigarette smoke, where optimal discrimination between treated and healthy mice occurred at a similar airway pressure as in the rats. We subsequently explored the evolution of ADC measured at the intermediate inflation level in mice after prolonged smoke exposure and found a significant increase (P < 0.01) in ADC over time. Our results demonstrate that measuring ADC at intermediate inflation enhances the distinction between healthy and diseased lungs, thereby establishing a model that may improve the diagnostic accuracy of future HP gas diffusion studies.


Subject(s)
Lung/pathology , Pulmonary Emphysema/pathology , Animals , Diffusion Magnetic Resonance Imaging/methods , Disease Models, Animal , Helium/chemistry , Mice , Mice, Inbred C57BL , Pancreatic Elastase/administration & dosage , Pressure , Rats , Rats, Sprague-Dawley , Smoke/adverse effects
6.
Radiology ; 279(3): 917-24, 2016 06.
Article in English | MEDLINE | ID: mdl-26785042

ABSTRACT

Purpose To assess the feasibility and optimize the accuracy of the multibreath wash-in hyperpolarized helium 3 ((3)He) approach to ventilation measurement by using magnetic resonance (MR) imaging as well as to examine the physiologic differences that this approach reveals among nonsmokers, asymptomatic smokers, and patients with chronic obstructive pulmonary disease (COPD). Materials and Methods All experiments were approved by the local institutional review board and compliant with HIPAA. Informed consent was obtained from all subjects. To measure fractional ventilation, the authors administered a series of identical normoxic hyperpolarized gas breaths to the subject; after each inspiration, an image was acquired during a short breath hold. Signal intensity buildup was fit to a recursive model that regionally solves for fractional ventilation. This measurement was successfully performed in nine subjects: three healthy nonsmokers (one man, two women; mean age, 45 years ± 4), three asymptomatic smokers (three men; mean age, 51 years ± 5), and three patients with COPD (three men; mean age, 59 years ± 5). Repeated measures analysis of variance was performed, followed by post hoc tests with Bonferroni correction, to assess the differences among the three cohorts. Results Whole-lung fractional ventilation as measured with hyperpolarized (3)He in all subjects (mean, 0.24 ± 0.06) showed a strong correlation with global fractional ventilation as measured with a gas delivery device (R(2) = 0.96, P < .001). Significant differences between the means of whole-lung fractional ventilation (F2,10 = 7.144, P = .012) and fractional ventilation heterogeneity (F2,10 = 7.639, P = .010) were detected among cohorts. In patients with COPD, the protocol revealed regions wherein fractional ventilation varied substantially over multiple breaths. Conclusion Multibreath wash-in hyperpolarized (3)He MR imaging of fractional ventilation is feasible in human subjects and demonstrates very good global (whole-lung) precision. Fractional ventilation measurement with this physiologically realistic approach reveals significant differences between patients with COPD and healthy subjects. To minimize error, several sources of potential bias must be corrected when calculating fractional ventilation. (©) RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Helium/administration & dosage , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Smoking/physiopathology , Adult , Biomarkers/analysis , Case-Control Studies , Feasibility Studies , Female , Helium/analysis , Humans , Lung/physiology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Signal Processing, Computer-Assisted
7.
Radiology ; 274(2): 585-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25322340

ABSTRACT

PURPOSE: To assess the ability of helium 3 ((3)He) magnetic resonance (MR) imaging of regional alveolar partial pressure of oxygen (Pao2) to depict smoking-induced functional alterations and to compare its efficacy to that of current diagnostic techniques. MATERIALS AND METHODS: This study was approved by the local institutional review board and was compliant with HIPAA. All subjects provided informed consent. A total of 43 subjects were separated into three groups: nonsmokers, asymptomatic smokers, and symptomatic smokers. All subjects underwent a Pao2 imaging session followed by clinically standard pulmonary function tests (PFTs), the 6-minute walk test, and St George Respiratory Questionnaire (SGRQ). The whole-lung mean and standard deviation of Pao2 were compared with metrics derived from PFTs, the 6-minute walk test, and the SGRQ. A logistic regression model was developed to identify the predictors of alterations to the lungs of asymptomatic smokers. RESULTS: The whole-lung standard deviation of Pao2 correlated with PFT metrics (forced expiratory volume in 1 second [FEV1]/forced vital capacity [FVC], Pearson r = -0.69, P < .001; percentage predicted FEV1, Pearson r = -0.67, P < .001; diffusing capacity of lung for carbon monoxide [Dlco], Pearson r = -0.45, P = .003), SGRQ score (Pearson r = 0.67, P < .001), and distance walked in 6 minutes (Pearson r = -0.47, P = .002). The standard deviation of Pao2 was significantly higher in asymptomatic smokers than in nonsmokers (change in the standard deviation of Pao2 = 7.59 mm Hg, P = .041) and lower when compared with symptomatic smokers (change in the standard deviation of Pao2 = 10.72 mm Hg, P = .001). A multivariate prediction model containing FEV1/FVC and the standard deviation of Pao2 (as significant predictors of subclinical changes in smokers) and Dlco (as a confounding variable) was formulated. This model resulted in an area under the receiver operating characteristic curve with a significant increase of 29.2% when compared with a prediction model based solely on nonimaging clinical tests. CONCLUSION: The (3)He MR imaging heterogeneity metric (standard deviation of Pao2) enabled the differentiation of all three study cohorts, which indicates that it can depict smoking-related functional alterations in asymptomatic current smokers.


Subject(s)
Helium , Magnetic Resonance Imaging/methods , Oxygen/physiology , Pulmonary Alveoli/physiopathology , Smoking/physiopathology , Female , Humans , Isotopes , Male , Middle Aged , Partial Pressure , Respiratory Function Tests
8.
Magn Reson Imaging ; 32(5): 535-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24629512

ABSTRACT

Secreted frizzled related protein-1 (SFRP1) plays a key role in many diverse processes, including embryogenesis, tissue repair, bone formation, and tumor genesis. Previous studies have shown the effects of the SFRP1 gene on lung development using the SFRP1 knockout mouse model via histological and physiological studies. In this study, the feasibility of ADC (acquired via HP (3)He) to detect altered lung structure in the SFRP1 knockout (SFRP1(-/-)) mice was investigated, and compared to analysis by histology. This study consisted of two groups, the wild-type (WT) mice and the knockout (KO) mice with n=6 mice for each group. (3)He ADC MRI and histology were performed on all of the animals. The global Lm values of WT and KO mice were 35.0±0.8µm and 38.4±3.8µm, respectively, which translated to an increase of 9.58% in the Lm of KO mice. The mean global ADCs for the WT and KO mice were 0.12±0.01cm(2)/s and 0.13±0.01cm(2)/s, respectively, which equated to a relative increase of 8.0% in the KO mice compared to the WT mice. In the sub-analysis of the anterior, medial and posterior lung regions, Lm increased by 10.50%, 6.66% and 11.84% in the KO mice, respectively, whereas the differences in ADC between the two groups in the anterior, medial, and posterior regions were 7.3%, 8.3%, and 4.6%, respectively. These results suggest that HP MRI measurements can be used as a suitable substitute for histology to obtain valuable information about lung geometry non-invasively. This technique is also advantageous as regional measurements can be performed, which can identify lung destruction more precisely. Most importantly, this approach extends far beyond the specific pathology analyzed in this study, as it can be applied to many other pathological conditions in the lung tissue, as well to many other embryonic studies.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Disease Models, Animal , Emphysema/pathology , Helium , Intercellular Signaling Peptides and Proteins/genetics , Lung/pathology , Membrane Proteins/genetics , Administration, Inhalation , Animals , Feasibility Studies , Helium/administration & dosage , Isotopes/administration & dosage , Mice, Knockout , Reproducibility of Results , Sensitivity and Specificity
9.
Acad Radiol ; 20(10): 1224-33, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24029054

ABSTRACT

RATIONALE AND OBJECTIVES: Alveolar oxygen tension (Pao2) is sensitive to the interplay between local ventilation, perfusion, and alveolar-capillary membrane permeability, and thus reflects physiologic heterogeneity of healthy and diseased lung function. Several hyperpolarized helium ((3)He) magnetic resonance imaging (MRI)-based Pao2 mapping techniques have been reported, and considerable effort has gone toward reducing Pao2 measurement error. We present a new Pao2 imaging scheme, using parallel accelerated MRI, which significantly reduces measurement error. MATERIALS AND METHODS: The proposed Pao2 mapping scheme was computer-simulated and was tested on both phantoms and five human subjects. Where possible, correspondence between actual local oxygen concentration and derived values was assessed for both bias (deviation from the true mean) and imaging artifact (deviation from the true spatial distribution). RESULTS: Phantom experiments demonstrated a significantly reduced coefficient of variation using the accelerated scheme. Simulation results support this observation and predict that correspondence between the true spatial distribution and the derived map is always superior using the accelerated scheme, although the improvement becomes less significant as the signal-to-noise ratio increases. Paired measurements in the human subjects, comparing accelerated and fully sampled schemes, show a reduced Pao2 distribution width for 41 of 46 slices. CONCLUSION: In contrast to proton MRI, acceleration of hyperpolarized imaging has no signal-to-noise penalty; its use in Pao2 measurement is therefore always beneficial. Comparison of multiple schemes shows that the benefit arises from a longer time-base during which oxygen-induced depolarization modifies the signal strength. Demonstration of the accelerated technique in human studies shows the feasibility of the method and suggests that measurement error is reduced here as well, particularly at low signal-to-noise levels.


Subject(s)
Helium , Magnetic Resonance Imaging/methods , Oximetry/methods , Oxygen/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/metabolism , Adult , Contrast Media/pharmacokinetics , Female , Helium/pharmacokinetics , Humans , Isotopes/pharmacokinetics , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged , Phantoms, Imaging , Pulmonary Alveoli/pathology , Pulmonary Gas Exchange , Reproducibility of Results , Sensitivity and Specificity , Smoking/pathology
10.
Anesthesiology ; 119(6): 1402-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24025616

ABSTRACT

BACKGROUND: Although it is recognized that pulmonary hysteresis can influence the effects of positive end-expiratory pressure (PEEP), the extent to which expansion of previously opened (vs. newly opening) peripheral airspaces contribute to increased lung volume is unknown. METHODS: Following a recruitment maneuver, rats were ventilated with constant tidal volumes and imaged during ascending and descending ramps of PEEP. RESULTS: The authors estimated peripheral airspace dimensions by measuring the apparent diffusion coefficient of He in 10 rats. In a separate group (n = 5) undergoing a similar protocol, the authors used computerized tomography to quantify lung volume. Hysteresis was confirmed by larger end-inspiratory lung volume (mean ± SD; all PEEP levels included): 8.4 ± 2.8 versus 6.8 ± 2.0 ml (P < 0.001) and dynamic compliance: 0.52 ± 0.12 versus 0.42 ± 0.09 ml/cm H2O (P < 0.001) during descending versus ascending PEEP ramps. Apparent diffusion coefficient increased with PEEP, but it was smaller during the descending versus ascending ramps for corresponding levels of PEEP: 0.168 ± 0.019 versus 0.183 ± 0.019 cm/s (P < 0.001). Apparent diffusion coefficient was smaller in the posterior versus anterior lung regions, but the effect of PEEP and hysteresis on apparent diffusion coefficient was greater in the posterior regions. CONCLUSIONS: The authors' study results suggest that in healthy lungs, larger lung volumes due to hysteresis are associated with smaller individual airspaces. This may be explained by opening of previously nonaerated peripheral airspaces rather than expansion of those already aerated. Setting PEEP on a descending ramp may minimize distension of individual airspaces.


Subject(s)
Anesthesia/statistics & numerical data , Lung/anatomy & histology , Lung/physiology , Positive-Pressure Respiration/adverse effects , Animals , Image Interpretation, Computer-Assisted , Lung Volume Measurements , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Tomography, X-Ray Computed
11.
Magn Reson Med ; 70(6): 1557-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23382040

ABSTRACT

PURPOSE: A systematic study of the short-term and long-term variability of regional alveolar partial pressure of oxygen tension (pA O2 ) measurements using (3) He magnetic resonance imaging was presented. Additionally, the repeatability of the average evaluated pA O2 was compared with that of the standard pulmonary function tests. METHODS: Pulmonary function test and pA O2 imaging were performed on 4 nonsmokers (1 M, 3 F, 56 ± 1.7 years) and 4 smokers (3 M, 1 F, 52 ± 7.5 years) during three visits over the course of 2 weeks. Two measurements were performed per visit. Variability of pA O2 was assessed using a mixed-effect model, with an intraclass correlation coefficient calculated for each group. The coefficient of variation of pA O2 over the 3-day period was also compared with the coefficient of variation of pulmonary function test results. RESULTS: Short-term regional variability based on intraclass correlation coefficient was 0.71 for nonsmokers, and 0.63 for smokers, with long-term variability significantly lower at 0.59 and 0.47, respectively. While the coefficient of variation of the average pA O2 was similar to the repeatability of the diffusing capacity of CO, it was significantly higher than that of Forced Vital Capacity (P = 0.02). CONCLUSION: Short-term and long-term pA O2 variability differences were used as an indication of true physiological changes in order to measure technical reproducibility. Smokers show higher physiologic variability and less technical reproducibility. The suggested pA O2 -imaging technique showed a reasonable regional repeatability in nonsmokers as well as the ability to detect differences between the two groups with similar reproducibility and superior discriminatory ability when compared with pulmonary function tests.


Subject(s)
Helium , Image Interpretation, Computer-Assisted/methods , Lung/physiopathology , Magnetic Resonance Imaging/methods , Oxygen/metabolism , Pulmonary Gas Exchange , Smoking/physiopathology , Contrast Media , Female , Humans , Isotopes , Male , Middle Aged , Oximetry/methods , Oxygen Consumption , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
12.
Magn Reson Med ; 70(5): 1353-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23400938

ABSTRACT

PURPOSE: To investigate the utility of accelerated imaging to enhance multibreath fractional ventilation (r) measurement accuracy using hyperpolarized gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2 -induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally, it may improve r estimation accuracy by reducing radiofrequency destruction of hyperpolarized gas. METHODS: Image acceleration was achieved using an eight-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and data was reconstructed for various matrix sizes (48-128) using generalized auto-calibrating partially parallel acquisition. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS: Optimal acceleration factor was fairly invariable (2.0-2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39-51% error reduction). In vivo r values were not significantly different between the two methods: 0.27 ± 0.09, 0.35 ± 0.06, 0.40 ± 0.04 (standard) versus 0.23 ± 0.05, 0.34 ± 0.03, 0.37 ± 0.02 (accelerated); for anterior, medial, and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P < 0.001): 0.021 ± 0.007 (standard) versus 0.019 ± 0.005 (accelerated) (cm(-1) ). CONCLUSION: Quadruple phased array coil simulations resulted in an optimal acceleration factor of ∼2× independent of imaging resolution. Results advocate undersampled image acceleration to improve accuracy of fractional ventilation measurement with hyperpolarized gas MRI.


Subject(s)
Algorithms , Helium , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pulmonary Ventilation/physiology , Animals , Humans , Image Enhancement/methods , Radioisotopes , Reproducibility of Results , Sensitivity and Specificity , Swine
13.
Crit Care Med ; 41(2): 527-35, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23263577

ABSTRACT

OBJECTIVE: Atelectasis and surfactant depletion may contribute to greater distension-and thereby injury-of aerated lung regions; recruitment of atelectatic lung may protect these regions by attenuating such overdistension. However, the effects of atelectasis (and recruitment) on aerated airspaces remain elusive. We tested the hypothesis that during mechanical ventilation, surfactant depletion increases the dimensions of aerated airspaces and that lung recruitment reverses these changes. DESIGN: Prospective imaging study in an animal model. SETTING: Research imaging facility. SUBJECTS: Twenty-seven healthy Sprague Dawley rats. INTERVENTIONS: Surfactant depletion was obtained by saline lavage in anesthetized, ventilated rats. Alveolar recruitment was accomplished using positive end-expiratory pressure and exogenous surfactant administration. MEASUREMENTS AND MAIN RESULTS: Airspace dimensions were estimated by measuring the apparent diffusion coefficient of He, using diffusion-weighted hyperpolarized gas magnetic resonance imaging. Atelectasis was demonstrated using computerized tomography and by measuring oxygenation. Saline lavage increased atelectasis (increase in nonaerated tissue from 1.2% to 13.8% of imaged area, p < 0.001), and produced a concomitant increase in mean apparent diffusion coefficient (~33%, p < 0.001) vs. baseline; the heterogeneity of the computerized tomography signal and the variance of apparent diffusion coefficient were also increased. Application of positive end-expiratory pressure and surfactant reduced the mean apparent diffusion coefficient (~23%, p < 0.001), and its variance, in parallel to alveolar recruitment (i.e., less computerized tomography densities and heterogeneity, increased oxygenation). CONCLUSIONS: Overdistension of aerated lung occurs during atelectasis is detectable using clinically relevant magnetic resonance imaging technology, and could be a key factor in the generation of lung injury during mechanical ventilation. Lung recruitment by higher positive end-expiratory pressure and surfactant administration reduces airspace distension.


Subject(s)
Pulmonary Alveoli/pathology , Pulmonary Atelectasis/pathology , Pulmonary Surfactants/metabolism , Animals , Bronchoalveolar Lavage , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Lung/metabolism , Lung/pathology , Positive-Pressure Respiration , Prospective Studies , Pulmonary Surfactants/pharmacology , Rats , Rats, Sprague-Dawley , Tomography, X-Ray Computed , Ventilator-Induced Lung Injury
14.
NMR Biomed ; 25(9): 1015-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22290603

ABSTRACT

The noninvasive assessment of regional lung ventilation is of critical importance in the quantification of the severity of disease and evaluation of response to therapy in many pulmonary diseases. This work presents, for the first time, the implementation of a hyperpolarized (HP) gas MRI technique to measure whole-lung regional fractional ventilation (r) in Yorkshire pigs (n = 5) through the use of a gas mixing and delivery device in the supine position. The proposed technique utilizes a series of back-to-back HP gas breaths with images acquired during short end-inspiratory breath-holds. In order to decouple the radiofrequency pulse decay effect from the ventilatory signal build-up in the airways, the regional distribution of the flip angle (α) was estimated in the imaged slices by acquiring a series of back-to-back images with no interscan time delay during a breath-hold at the tail end of the ventilation sequence. Analysis was performed to assess the sensitivity of the multislice ventilation model to noise, oxygen and the number of flip angle images. The optimal α value was determined on the basis of the minimization of the error in r estimation: α(opt) = 5-6º for the set of acquisition parameters in pigs. The mean r values for the group of pigs were 0.27 ± 0.09, 0.35 ± 0.06 and 0.40 ± 0.04 for the ventral, middle and dorsal slices, respectively (excluding conductive airways r 0.9). A positive gravitational (ventral-dorsal) ventilation gradient effect was present in all animals. The trachea and major conductive airways showed a uniform near-unity r value, with progressively smaller values corresponding to smaller diameter airways, and ultimately leading to lung parenchyma. The results demonstrate the feasibility of the measurement of the fractional ventilation in large species, and provide a platform to address the technical challenges associated with long breathing time scales through the optimization of acquisition parameters in species with a pulmonary physiology very similar to that of humans.


Subject(s)
Gases , Magnetic Resonance Imaging/methods , Pulmonary Ventilation/physiology , Sus scrofa/physiology , Animals , Lung/physiology , Models, Biological , Ventilators, Mechanical
15.
J Appl Physiol (1985) ; 112(1): 135-48, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21940853

ABSTRACT

Changes in lung function and structure were studied using hyperpolarized (3)He MRI in an elastase-induced murine model of emphysema. The combined analysis of the apparent diffusion coefficient (ADC) and fractional ventilation (R) were used to distinguish emphysematous changes and also to develop a model for classifying sections of the lung into diseased and normal. Twelve healthy male BALB/c mice (26 ± 2 g) were randomized into healthy and elastase-induced mice and studied ∼8-11 wk after model induction. ADC and R were measured at a submillimeter planar resolution. Chord length (L(x)) data were analyzed from histology samples from the corresponding imaged slices. Logistic regression was applied to estimate the probability that an imaged pixel came from a diseased animal, and bootstrap methods (1,000 samples) were used to compare the regression results for the morphological and imaging results. Multivariate ANOVA (MANOVA) was used to analyze transformed ADC (ADC(BC)), and R (R(BC)) data and also to control for the experiment-wide error rate. MANOVA and ANOVA showed that elastase induced a statistically measureable change in the average transformed L(x) and ADC(BC) but not in the average R(BC). Marginal mean analysis demonstrated that ADC(BC) was on average 0.19 [95% confidence interval (CI): 0.16, 0.22] higher in the emphysema group, whereas R(BC) was on average 0.05 (95% CI: 0.04, 0.06) lower. Logistic regression supported the hypothesis that ADC(BC) and R(BC), together, were better at differentiating normal from diseased tissue than either measurement alone. The odds ratios for ADC(BC) and R(BC) were 7.73 (95% CI: 5.23, 11.42) and 9.14 × 10(-5) (95% CI: 3.33 × 10(-5), 25.06 × 10(-5)), respectively. Using a 50% probability cutoff, this model classified 70.6% of pixels correctly. The sensitivity and specificity of this model at the 50% cutoff were 74.9% and 65.2%, respectively. The area under the receiver operating characteristic curve was 0.76 (95% CI: 0.74, 0.78). The regression model presented can be used to map MRI data to disease probability maps. These probability maps present a future possibility of using both measurements in a more clinically feasible method of diagnosing this disease.


Subject(s)
Disease Models, Animal , Lung/pathology , Lung/physiology , Pancreatic Elastase/toxicity , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology , Analysis of Variance , Animals , Logistic Models , Male , Mice , Mice, Inbred BALB C , Pulmonary Emphysema/chemically induced , Random Allocation
16.
Magn Reson Med ; 67(5): 1332-45, 2012 May.
Article in English | MEDLINE | ID: mdl-22190347

ABSTRACT

Reliable, noninvasive, and high-resolution imaging of alveolar partial pressure of oxygen (p(A)O(2)) is a potentially valuable tool in the early diagnosis of pulmonary diseases. Several techniques have been proposed for regional measurement of p(A)O(2) based on the increased depolarization rate of hyperpolarized (3) He. In this study, we explore one such technique by applying a multislice p(A)O(2) -imaging scheme that uses interleaved-slice ordering to utilize interslice time-delays more efficiently. This approach addresses the low spatial resolution and long breath-hold requirements of earlier techniques, allowing p(A)O(2) measurements to be made over the entire human lung in 10-15 s with a typical resolution of 8.3 × 8.3 × 15.6 mm(3). PO(2) measurements in a glass syringe phantom were in agreement with independent gas analysis within 4.7 ± 4.1% (R = 0.9993). The technique is demonstrated in four human subjects (healthy nonsmoker, healthy former smoker, healthy smoker, and patient with COPD), each imaged six times on 3 different days during a 2-week span. Two independent measurements were performed in each session, consisting of 12 coronal slices. The overall p(A)O(2) mean across all subjects was 95.9 ± 12.2 Torr and correlated well with end-tidal O(2) (R = 0.805, P < 0.0001). The alveolar O(2) uptake rate was consistent with the expected range of 1-2 Torr/s. Repeatable visual features were observed in p(A)O(2) maps over different days, as were characteristic differences among the subjects and gravity-dependent effects.


Subject(s)
Helium , Magnetic Resonance Imaging/methods , Oxygen/analysis , Pulmonary Alveoli/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mechanics , Smoking/metabolism , Contrast Media/administration & dosage , Helium/administration & dosage , Humans , Isotopes/administration & dosage , Male , Middle Aged , Pulmonary Alveoli/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/pathology , Tissue Distribution
17.
NMR Biomed ; 24(8): 933-42, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21845739

ABSTRACT

A detailed description of the construction and use of a device for hyperpolarization of select contrast agents is presented. The device is based on molecular incorporation of the spin-order inherent to parahydrogen, followed by order transfer to a metastable heteronuclear alignment. Design considerations and experimental results relating to catalyst/solvent choice and handling, solvent heating, efficient gas entrainment and spin-order transfer are described. The resulting degree of hyperpolarization is shown to be substantial, ranging from a few to over 50%, depending on the choice of target molecule. Finally, the use of the hyperpolarized agent is demonstrated in a series of in vivo images.


Subject(s)
Contrast Media , Hydrogen/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Equipment Design
18.
NMR Biomed ; 24(10): 1253-63, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21387449

ABSTRACT

A method is presented which allows for the accurate extraction of regional functional metrics in rodent lungs using hyperpolarized gas. The technique is based on the combination of measured T(1) decay, an independent measure of specific ventilation and mass balance considerations to extract the regional oxygen levels and uptake. In phantom and animal experiments, it is demonstrated that the redistribution of gas during the measurement is a significant confounding factor, and this effect is addressed analytically. The resulting parameterization of gas flow increases the accuracy of oxygen-sensitive MRI, and may also be used independently to assess air trapping and airway constriction. Limitations of the technique with respect to spatial resolution and robustness are also discussed.


Subject(s)
Lung/metabolism , Magnetic Resonance Imaging/methods , Oxygen/metabolism , Pulmonary Gas Exchange/physiology , Animals , Male , Partial Pressure , Phantoms, Imaging , Rats , Rats, Wistar , Respiration , Time Factors
19.
J Appl Physiol (1985) ; 110(1): 225-35, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20884833

ABSTRACT

Regional and global relationships of lung function and structure were studied using hyperpolarized ³He MRI in a rat elastase-induced model of emphysema (n = 4) and healthy controls (n = 5). Fractional ventilation (r) and apparent diffusion coefficient (ADC) of ³He were measured at a submillimeter planar resolution in ventral, middle, and dorsal slices 6 mo after model induction. Pulmonary function testing (PFT) was performed before MRI to yield forced expiratory volume in 50 ms (FEV50), airway resistance (R(I)), and dynamic compliance (C(dyn)). Cutoff threshold values of ventilation and diffusion, r* and ADC*, were computed corresponding to 80% population of pixels falling above or below each threshold value, respectively. For correlation analysis, r* was compared with FEV50/functional residual capacity (FRC), R(I) and C(dyn), whereas ADC* was compared with FEV50/FRC, total lung capacity (TLC), and C(dyn). Regional correlation of r and ADC was evaluated by dividing each of the three lung slices into four quadrants. C(dyn) was significantly larger in elastase rats (0.92 ± 0.16 vs. 0.61 ± 0.12 ml/cmH2O). The difference of R(I) and FEV50 was insignificant between the two groups. The r* of healthy rats was significantly larger than the elastase group (0.42 ± 0.03 vs. 0.28 ± 0.06), whereas ADC* was significantly smaller in healthy animals (0.27 ± 0.04 vs. 0.36 ± 0.01 cm²/s). No systematic difference in these quantities was observed between the three lung slices. A significant 33% increase in ADC* and a significant 31% decline in r* for elastase rats was observed compared with a significant 51% increase in C(dyn) and a nonsignificant 26% decline in FEV50/FRC. Correlation of imaging and PFT metrics revealed that r and ADC divide the rats into two separate clusters in the sample space.


Subject(s)
Emphysema/pathology , Emphysema/physiopathology , Helium , Lung/pathology , Lung/physiopathology , Magnetic Resonance Imaging/methods , Respiratory Function Tests/methods , Animals , Contrast Media , Emphysema/diagnosis , Isotopes , Male , Radiopharmaceuticals , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
20.
J Appl Physiol (1985) ; 110(2): 499-511, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21127207

ABSTRACT

The aim of this study was to assess the utility of (3)He MRI to noninvasively probe the effects of positive end-expiratory pressure (PEEP) maneuvers on alveolar recruitment and atelectasis buildup in mechanically ventilated animals. Sprague-Dawley rats (n = 13) were anesthetized, intubated, and ventilated in the supine position ((4)He-to-O(2) ratio: 4:1; tidal volume: 10 ml/kg, 60 breaths/min, and inspiration-to-expiration ratio: 1:2). Recruitment maneuvers consisted of either a stepwise increase of PEEP to 9 cmH(2)O and back to zero end-expiratory pressure or alternating between these two PEEP levels. Diffusion MRI was performed to image (3)He apparent diffusion coefficient (ADC) maps in the middle coronal slices of lungs (n = 10). ADC was measured immediately before and after two recruitment maneuvers, which were separated from each other with a wait period (8-44 min). We detected a statistically significant decrease in mean ADC after each recruitment maneuver. The relative ADC change was -21.2 ± 4.1 % after the first maneuver and -9.7 ± 5.8 % after the second maneuver. A significant relative increase in mean ADC was observed over the wait period between the two recruitment maneuvers. The extent of this ADC buildup was time dependent, as it was significantly related to the duration of the wait period. The two postrecruitment ADC measurements were similar, suggesting that the lungs returned to the same state after the recruitment maneuvers were applied. No significant intrasubject differences in ADC were observed between the corresponding PEEP levels in two rats that underwent three repeat maneuvers. Airway pressure tracings were recorded in separate rats undergoing one PEEP maneuver (n = 3) and showed a significant relative difference in peak inspiratory pressure between pre- and poststates. These observations support the hypothesis of redistribution of alveolar gas due to recruitment of collapsed alveoli in presence of atelectasis, which was also supported by the decrease in peak inspiratory pressure after recruitment maneuvers.


Subject(s)
Helium , Magnetic Resonance Imaging/methods , Positive-Pressure Respiration/methods , Pulmonary Alveoli/physiology , Pulmonary Gas Exchange/physiology , Animals , Contrast Media , Isotopes , Male , Pulmonary Alveoli/anatomy & histology , Radiopharmaceuticals , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...