Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 278: 116431, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718730

ABSTRACT

The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.


Subject(s)
Iron , Mercury , Metal Nanoparticles , Soil Pollutants , Soil , Mercury/toxicity , Soil Pollutants/toxicity , Metal Nanoparticles/toxicity , Soil/chemistry , Edetic Acid/chemistry , Poaceae/drug effects , Poaceae/growth & development , Environmental Restoration and Remediation/methods , Nutrients , Antioxidants/metabolism
2.
J Nanobiotechnology ; 22(1): 91, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443975

ABSTRACT

The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.


Subject(s)
Arsenic , Crop Production , Humans , Agriculture , Agrochemicals/toxicity , Aluminum
3.
Environ Sci Pollut Res Int ; 31(5): 7008-7026, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38158528

ABSTRACT

Exogenous application of phytohormones is getting promising results in alleviating abiotic stresses, particularly heavy metal (HMs). Jasmonate (JA) and brassinosteroid (BR) have crosstalk in bamboo plants, reflecting a burgeoning area of investigation. Lead (Pb) is the most common pollutant in the environment, adversely affecting plants and human health. The current study focused on the foliar application of 10 µM JA and 10 µM BR in both single and combination forms on bamboo plants grown under Pb stress (0, 50, 100, 150 µM) with a completely randomized design by four replications. The study found that applying 10 µM JA and 10 µM BR significantly improves growth and tolerance by reducing oxidative stress, reactive oxygen species including hydrogen peroxide (H2O2, 32.91%), superoxide radicals (O2-•, 33.9%), methylglyoxal (MG, 19%), membrane lipoperoxidation (25.66%), and electrolyte leakage (41.5%) while increasing antioxidant (SOD (18%), POD (13%), CAT (20%), APX (12%), and GR (19%)), non-antioxidant (total phenolics (7%), flavonols (12.3%), and tocopherols (13.8%)), and glyoxylate activity (GLyI (13%), GLyII (19%)), proline content (19%), plant metal chelating capacity (17.3%), photosynthetic pigments (16%), plant growth (10%), and biomass (12%). We found that JA and BR, in concert, boost bamboo species' Pb tolerance by enhancing antioxidant and glyoxalase cycles, ion chelation, and reducing metal translocation and accumulation. This conclusively demonstrates that utilizing a BR-JA combination form at 10 µM dose may have the potential to yield optimal efficiency in mitigating oxidative stress in bamboo plants.


Subject(s)
Antioxidants , Brassinosteroids , Cyclopentanes , Oxylipins , Humans , Brassinosteroids/pharmacology , Lead/toxicity , Hydrogen Peroxide
4.
Front Plant Sci ; 14: 1121886, 2023.
Article in English | MEDLINE | ID: mdl-37063222

ABSTRACT

Introduction: Arsenic (As) contamination in soil, sediments, and water poses a significant threat to the growth of bamboo plants. However, nanoparticles with high metal absorbance capacity can play a key role in the reduction of heavy metals toxicity in plants as well as maintaining their growth under toxicity. Methods: Hence, an in vitro experiment was conducted to determine the influence of three types of nanoparticles: 150 µM silicon nanoparticles (SiO2 NPs), 150 µM titanium nanoparticles (TiO2 NPs), and 150 µM zinc oxide nanoparticles (ZnO NPs) on As (150 µM and 250 µM) tolerance enhancement of a one-year-old bamboo species (Pleioblastus pygmaeus). Results and discussion: The results showed that while As at 150 µM and 250 µM significantly disrupted the plant growth by excessive generation of reactive oxygen species (ROS) components, and inducing cell membrane peroxidation, the addition of NPs increased both enzymatic and non-enzymatic antioxidant activities, upregulated glyoxalase defense system, and improved gas exchange parameters and photosynthetic pigments content, leading to the enhanced plant shoot and root dry weight. These were achieved by lowering levels of ROS, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) and the superoxide radical ( O 2 • - ), as well as decreasing As accumulation in the plant organs. Thus, it might be concluded that ZnO NPs, SiO2NPs, and TiO2NPS alone or in combination can significantly increase the bamboo plant tolerance to As toxicity via key mechanisms, including induction of various antioxidants and glyoxalase defense systems, scavenging of ROS and methylglyoxal (MG), increasing phytochelatins production, reduction of As accumulation and translocation, and improving photosynthetic pigments under As toxicity. Additionally, the results showed that the combined application of 150 µM ZnO NPs, SiO2 NPs, and TiO2 NPs had the greatest effect on enhancing the plant tolerance to As at 150 µM and 250 µM.

5.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768266

ABSTRACT

Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.


Subject(s)
Antioxidants , Manganese , Nitroprusside/pharmacology , Manganese/toxicity , Chromium/toxicity , Water , Glutathione , Nitric Oxide Donors
6.
Antioxidants (Basel) ; 11(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36552536

ABSTRACT

An in vitro experiment was conducted to determine the influence of phytohormones on the enhancement of bamboo resistance to heavy metal exposure (Cd and Cu). To this end, one-year-old bamboo plants (Pleioblastus pygmaeus (Miq.) Nakai.) contaminated by 100 µM Cd and 100 µM Cu both individually and in combination were treated with 10 µM, 6-benzylaminopurine and 10 µM abscisic acid. The results revealed that while 100 µM Cd and 100 µM Cu accelerated plant cell death and decreased plant growth and development, 10 µM 6-benzylaminopurine and 10 µM abscisic acid, both individually and in combination, increased plant growth by boosting antioxidant activities, non-antioxidants indices, tyrosine ammonia-lyase activity (TAL), as well as phenylalanine ammonia-lyase activity (PAL). Moreover, this combination enhanced protein thiol, total thiol, non-protein, glycine betaine (GB), the content of proline (Pro), glutathione (GSH), photosynthetic pigments (Chlorophyll and Carotenoids), fluorescence parameters, dry weight in shoot and root, as well as length of the shoot. It was then concluded that 6-benzyl amino purine and abscisic acid, both individually and in combination, enhanced plant tolerance under Cd and Cu through several key mechanisms, including increased antioxidant activity, improved photosynthesis properties, and decreased metals accumulation and metal translocation from root to shoot.

8.
Front Plant Sci ; 13: 905444, 2022.
Article in English | MEDLINE | ID: mdl-36061770

ABSTRACT

Casuarina equisetifolia is an important tree of the forest, cultivated in tropical and subtropical regions, providing fuelwood, land reclamation, dune stabilization, paper production, and nitrogen fixation. We have developed a systematic in vitro propagation protocol in C. equisetifolia using nodal segments (NS). Murashige and Skoog (MS) medium augmented with BA (5.0 µM) and NAA (0.5 µM) gave rise to a maximum of 32.00 ± 0.31 shoots per explant (S/E) with shoot length (SL) of 3.94 ± 0.02 cm, and a maximum of 70% regeneration potential (RP) was recorded after 8 weeks of post inoculation. For root induction, in vitro derived shoots were transferred to the nutrient medium consisting of a half-strength (½) MS medium augmented with 2.5 µM NAA, which produced a maximum of 12.68 ± 0.33 roots/shoot (R/S) with 3.04 ± 0.50 cm root length (RL) in 60% of culture after 6 weeks. Micropropagated plants with healthy shoots and roots were successfully acclimatized in vermicompost + garden soil + sand (1:2:1) and a maximum survival percentage of 95.1% was recorded. NS was taken from a 6-weeks-old in vitro derived plant of C. equisetifolia for synthetic seed production, and it was reported that CaCl2 · 2H2O (100 mM) + Na2-alginate (4%) resulted in clear and uniform beads. Furthermore, the maximum conversion of synthetic seeds into plantlets occurred over a period of 4 weeks of storage at 4°C. Scanning Electron Microscopy (SEM) revealed the formation of direct shoot buds without any intermediate callus formation. In addition, the chlorophyll and carotenoid contents of the direct regenerated and mother plant were compared. Similarly, RAPD and ISSR primers were used for genetic homogeneity assessment of the direct regenerated plants, where a total of 18 and 19, respectively, clear and reproducible bands with 100% monomorphism were recorded. The developed micropropagation protocol can certainly be used for large-scale multiplication and germplasm preservation of C. equisetifolia. It will also help in meeting the growing demands of C. equisetifolia in the forest industry.

9.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35957097

ABSTRACT

Agriculture is an important sector that plays an important role in providing food to both humans and animals. In addition, this sector plays an important role in the world economy. Changes in climatic conditions and biotic and abiotic stresses cause significant damage to agricultural production around the world. Therefore, the development of sustainable agricultural techniques is becoming increasingly important keeping in view the growing population and its demands. Nanotechnology provides important tools to different industrial sectors, and nowadays, the use of nanotechnology is focused on achieving a sustainable agricultural system. Great attention has been given to the development and optimization of nanomaterials and their application in the agriculture sector to improve plant growth and development, plant health and protection and overall performance in terms of morphological and physiological activities. The present communication provides up-to-date information on nanotechnological interventions in the agriculture sector. The present review deals with nanoparticles, their types and the role of nanotechnology in plant growth, development, pathogen detection and crop protection, its role in the delivery of genetic material, plant growth regulators and agrochemicals and its role in genetic engineering. Moreover, the role of nanotechnology in stress management is also discussed. Our aim in this review is to aid researchers to learn quickly how to use plant nanotechnology for improving agricultural production.

10.
J Adv Res ; 42: 99-116, 2022 12.
Article in English | MEDLINE | ID: mdl-35690579

ABSTRACT

BACKGROUND: The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW: Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW: The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.


Subject(s)
Histones , Plant Cells , Reactive Oxygen Species/metabolism , Plant Cells/metabolism , Histones/genetics , Histones/metabolism , Oxidation-Reduction , Epigenesis, Genetic , Stress, Physiological , Plants/genetics , Plants/metabolism , DNA Methylation , Chromatin/metabolism
11.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35326101

ABSTRACT

The integrated application of nanoparticles and phytohormones was explored in this study as a potentially eco-friendly remediation strategy to mitigate heavy metal toxicity in a bamboo species (Pleioblastus pygmaeus) by utilizing titanium oxide nanoparticles (TiO2-NPs) and 24-epibrassinolide (EBL). Hence, an in vitro experiment was performed to evaluate the role of 100 µM TiO2 NPs and 10-8 M 24-epibrassinolide individually and in combination under 100 µM Cu and Cd in a completely randomized design using four replicates. Whereas 100 µM of Cu and Cd reduced antioxidant activity, photosynthetic capacity, plant tolerance, and ultimately plant growth, the co-application of 100 µM TiO2 NPs and 10-8 M EBL+ heavy metals (Cu and Cd) resulted in a significant increase in plant antioxidant activity (85%), nonenzymatic antioxidant activities (47%), photosynthetic pigments (43%), fluorescence parameters (68%), plant growth (39%), and plant tolerance (41%) and a significant reduction in the contents of malondialdehyde (45%), hydrogen peroxide (36%), superoxide radical (62%), and soluble protein (28%), as well as the percentage of electrolyte leakage (49%), relative to the control. Moreover, heavy metal accumulation and translocation were reduced by TiO2 NPs and EBL individually and in combination, which could improve bamboo plant tolerance.

12.
Front Plant Sci ; 13: 841501, 2022.
Article in English | MEDLINE | ID: mdl-35295636

ABSTRACT

The utilization of nanoparticles to potentially reduce toxicity from metals/metalloids in plants has increased in recent years, which can help them to achieve tolerance under the stressful conditions. An in vitro experiment was conducted to investigate five different levels of zinc oxide nanoparticles (ZnO-NPs; 0, 50, 100, 150, and 200 µM) both alone and in combination with 150 µM arsenic (As) and 150 µM mercury (Hg) in one-year-old Pleioblastus pygmaeus (Miq.) Nakai plants through four replications. The results demonstrated that As and Hg alone had damaging effects on the plant growth and development. However, the addition of various concentrations of ZnO-NPs led to increased antioxidant activity, proline (79%) content, glycine betaine (71%) content, tyrosine ammonia-lyase (43%) activity, phenylalanine ammonia-lyase (69%) activity, chlorophyll indices, and eventually plant biomass, while the lipoxygenase activity, electrolyte leakage, soluble protein, hydrogen peroxide content, and thiobarbituric acid reactive substances were reduced. We concluded that ZnO-NPs detoxified As and Hg toxicity in the plants through increasing antioxidant activity, reducing As and Hg accumulation, As and Hg translocation from roots to shoots, and adjusting stomatal closure. This detoxification was further confirmed by the reduction of the translocation factor of As and Hg and the enhancement of the tolerance index in combination with ZnO-NPs. However, there is a need for further investigation with different metals/metalloids.

13.
Antioxidants (Basel) ; 10(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34943084

ABSTRACT

Recently, nitric oxide (NO) has been reported to increase plant resistance to heavy metal stress. In this regard, an in vitro tissue culture experiment was conducted to evaluate the role of the NO donor sodium nitroprusside (SNP) in the alleviation of heavy metal toxicity in a bamboo species (Arundinaria pygmaea) under lead (Pb) and cadmium (Cd) toxicity. The treatment included 200 µmol of heavy metals (Pb and Cd) alone and in combination with 200 µM SNP: NO donor, 0.1% Hb, bovine hemoglobin (NO scavenger), and 50 µM L-NAME, N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor) in four replications in comparison to controls. The results demonstrated that the addition of L-NAME and Hb as an NO synthase inhibitor and NO scavenger significantly increased oxidative stress and injured the cell membrane of the bamboo species. The addition of sodium nitroprusside (SNP) for NO synthesis increased antioxidant activity, protein content, photosynthetic properties, plant biomass, and plant growth under heavy metal (Pb and Cd) toxicity. It was concluded that NO can increase plant tolerance for metal toxicity with some key mechanisms, such as increasing antioxidant activities, limiting metal translocation from roots to shoots, and diminishing metal accumulation in the roots, shoots, and stems of bamboo species under heavy metal toxicity (Pb and Cd).

14.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34768817

ABSTRACT

Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.


Subject(s)
DNA Methylation , DNA Transposable Elements , Plant Development , Plants/genetics , Stress, Physiological , Epigenesis, Genetic , Plant Physiological Phenomena
15.
ScientificWorldJournal ; 2020: 7284203, 2020.
Article in English | MEDLINE | ID: mdl-33061861

ABSTRACT

Bamboo forests are undoubtedly one of the most abundant nontimber plants on Earth and cover a wide area of tropical and subtropical regions around the world. This amazing plant has unique rapid growth and can play an important role in protecting our planet from pollution and improving the soil. Bamboo can be used as a biofuel, food, and for architecture and construction applications and plays a large role in the local economy by creating job opportunities. The aim of this paper is to review the extraordinary tropical plant bamboo by explaining the mechanisms related to the growth and strength of bamboo and identifying ways to utilize bamboo in industry, employment, climate change mitigation, and soil erosion reduction.


Subject(s)
Ecology , Ecosystem , Sasa/physiology , Biofuels , Carbon Dioxide/chemistry , Oxygen/chemistry , Plant Development , Plants, Edible , Soil
16.
Plant Signal Behav ; 15(7): 1777372, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32508222

ABSTRACT

Salicylic acid (SA) and gibberellins (GAs), as two important plant growth hormones, play a key role in increasing plant tolerance to abiotic stress. They contribute to the increased plant antioxidant activities in ROS scavenging, which is related to the enzymes involved in H2O2-detoxifying. In photosynthetic cycles, the endogenous form of these phytohormones enhances photosynthetic properties such as stomatal conductance, net photosynthesis (PN), photosynthetic oxygen evolution, and efficiency of carboxylation. Furthermore, in cell cycle, they are able to influence division and expansion of cell growth in plants under stress, leading to increased growth of radicle cells in a meristem, and ultimately contributing to the increased germination rate and lengths of shoot and root in the stress-affected plants. In the case of crosstalk between SA and GA, exogenous GA3 can upregulate biosynthesis of SA and consequently result in rising levels of SA, enhancing plant defense response to environmental abiotic stresses. The aim of this paper was to investigate the mechanisms related to GA and SA phytohormones in amelioration of abiotic stress, in particular, heavy metal stress.


Subject(s)
Gibberellins/pharmacology , Salicylic Acid/pharmacology , Gibberellins/metabolism , Metals, Heavy/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Signal Transduction/drug effects , Stress, Physiological
17.
ScientificWorldJournal ; 2018: 1219364, 2018.
Article in English | MEDLINE | ID: mdl-30111987

ABSTRACT

Investigating factors involved in the alleviation of the toxic effects of heavy metals (HMs) on plants is regarded as one of the important research concerns in the environmental field. The southern regions of China are severely impacted by human-induced heavy metal (HM) contamination, which poses an impediment to growth and productivity of bamboo (Indocalamus latifolius) plants. This necessitates the investigation of the effects of HMs on growth and physiological properties of bamboo. Therefore, the aim of the study was to evaluate some gas exchange and growth parameters in two-year-old bamboo species under HMs stress. A greenhouse-based experiment was conducted at Nanjing Forestry University, where the bamboo plant was treated with three HMs (Cu, Pb, and Zn) at four different concentrations (0, 500, 1000, and 2000 mg kg-1). The results illustrated that excessive HMs (1000 and 2000 mg kg-1) triggered a decline in a number of photosynthetic-related indices including the rate of photosynthesis (µmol CO2 m-2 s-1), intercellular CO2 concentration (µmol CO2 mol-1), conductance to H2O (mol H2O m-2 s-1), and net assimilation as well as transpiration. Morphological indices were also depressed as a result of the adverse influence of HMs, leading to decreased shoot length (10 to 73%) and reduced number of emerged plants (6 to 57%). Also, the results indicated that Pb had the greatest harmful impact on the growth indices.


Subject(s)
Metals, Heavy/toxicity , Photosynthesis/drug effects , Poaceae/drug effects , Poaceae/growth & development , Soil Pollutants/toxicity , Copper/toxicity , Environmental Monitoring , Lead/toxicity , Poaceae/physiology , Zinc/toxicity
18.
Biomed Res Int ; 2018: 8492898, 2018.
Article in English | MEDLINE | ID: mdl-29850578

ABSTRACT

The increased contaminants caused by anthropogenic activities in the environment and the importance of finding pathways to reduce pollution caused the silicon application to be considered an important detoxification agent. Silicon, as a beneficial element, plays an important role in amelioration of abiotic stress, such as an extreme dose of heavy metal in plants. There are several mechanisms involved in silicon mediation in plants, including the reduction of heavy metal uptake by plants, changing pH value, formation of Si heavy metals, and stimulation of enzyme activity, which can work by chemical and physical pathways. The aim of this paper is to investigate the major silicon-related mechanisms that reduce the toxicity of heavy metals in plants and then to assess the role of silicon in increasing the antioxidant enzyme and nonenzyme activities to protect the plant cell.


Subject(s)
Metals, Heavy/toxicity , Plants/metabolism , Silicon/pharmacology , Stress, Physiological , Glutathione/metabolism , Plants/drug effects , Plants/enzymology , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism
19.
ScientificWorldJournal ; 2015: 756120, 2015.
Article in English | MEDLINE | ID: mdl-25688377

ABSTRACT

Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.


Subject(s)
Environmental Pollutants/analysis , Inactivation, Metabolic/physiology , Metals, Heavy/analysis , Plants/chemistry , Reactive Oxygen Species/metabolism , Stress, Physiological/physiology , Chelating Agents/metabolism , Metallothionein/metabolism , Metals, Heavy/pharmacokinetics , Metals, Heavy/toxicity , Mycorrhizae/metabolism , Plants/metabolism , Plants/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...