Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Mol Phylogenet Evol ; 198: 108116, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871263

ABSTRACT

While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.

2.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38914464

ABSTRACT

Epilepsy is often comorbid with psychiatric illnesses, including anxiety and depression. Despite the high incidence of psychiatric comorbidities in people with epilepsy, few studies address the underlying mechanisms. Stress can trigger epilepsy and depression. Evidence from human and animal studies supports that hypothalamic-pituitary-adrenal (HPA) axis dysfunction may contribute to both disorders and their comorbidity ( Kanner, 2003). Here, we investigate if HPA axis dysfunction may influence epilepsy outcomes and psychiatric comorbidities. We generated a novel mouse model (Kcc2/Crh KO mice) lacking the K+/Cl- cotransporter, KCC2, in corticotropin-releasing hormone (CRH) neurons, which exhibit stress- and seizure-induced HPA axis hyperactivation ( Melon et al., 2018). We used the Kcc2/Crh KO mice to examine the impact on epilepsy outcomes, including seizure frequency/burden, comorbid behavioral deficits, and sudden unexpected death in epilepsy (SUDEP) risk. We found sex differences in HPA axis dysfunction's effect on chronically epileptic KCC2/Crh KO mice seizure burden, vulnerability to comorbid behavioral deficits, and SUDEP. Suppressing HPA axis hyperexcitability in this model using pharmacological or chemogenetic approaches decreased SUDEP incidence, suggesting that HPA axis dysfunction may contribute to SUDEP. Altered neuroendocrine markers were present in SUDEP cases compared with people with epilepsy or individuals without epilepsy. Together, these findings implicate HPA axis dysfunction in the pathophysiological mechanisms contributing to psychiatric comorbidities in epilepsy and SUDEP.


Subject(s)
Corticotropin-Releasing Hormone , Hypothalamo-Hypophyseal System , Mice, Knockout , Pituitary-Adrenal System , Sudden Unexpected Death in Epilepsy , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Male , Female , Mice , Corticotropin-Releasing Hormone/metabolism , Sex Characteristics , Epilepsy/metabolism , Epilepsy/physiopathology , K Cl- Cotransporters , Symporters/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Humans , Sex Factors
3.
Polymers (Basel) ; 16(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732755

ABSTRACT

The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.

4.
Heredity (Edinb) ; 132(6): 284-295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575800

ABSTRACT

One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard species Norops brasiliensis (Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation in N. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets.


Subject(s)
Gene Flow , Genetic Variation , Genetics, Population , Lizards , Animals , Lizards/genetics , Brazil , Models, Genetic , Machine Learning
5.
Geroscience ; 46(4): 3929-3943, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38457007

ABSTRACT

Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there was variability in the achievement of cognitive gains after cognitive training across studies, suggesting moderating factors. Learning trials of visual and verbal learning tasks recruit similar cognitive abilities and have overlapping neural correlates with speed-of-processing/working memory tasks and therefore could serve as potential moderators of cognitive training gains. This study explored the association between the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) learning with a commercial UFOV task called Double Decision. Through a secondary analysis of a clinical trial, we assessed the moderation of HVLT-R and BVMT-R learning on Double Decision improvement after a 3-month speed-of-processing/attention and working memory cognitive training intervention in a sample of 75 cognitively healthy older adults. Multiple linear regressions showed that better baseline Double Decision performance was significantly associated with better BVMT-R learning (ß = - .303). This association was not significant for HVLT-R learning (ß = - .142). Moderation analysis showed that those with poorer BVMT-R learning improved the most on the Double Decision task after cognitive training. This suggests that healthy older adults who perform below expectations on cognitive tasks related to the training task may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes and efficacy of the intervention.


Subject(s)
Memory, Short-Term , Humans , Male , Female , Aged , Memory, Short-Term/physiology , Memory and Learning Tests , Decision Making/physiology , Cognition/physiology , Neuropsychological Tests , Aged, 80 and over , Cognitive Training
6.
Geroscience ; 46(3): 3325-3339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38265579

ABSTRACT

Declines in several cognitive domains, most notably processing speed, occur in non-pathological aging. Given the exponential growth of the older adult population, declines in cognition serve as a significant public health issue that must be addressed. Promising studies have shown that cognitive training in older adults, particularly using the useful field of view (UFOV) paradigm, can improve cognition with moderate to large effect sizes. Additionally, meta-analyses have found that transcranial direct current stimulation (tDCS), a non-invasive form of brain stimulation, can improve cognition in attention/processing speed and working memory. However, only a handful of studies have looked at concomitant tDCS and cognitive training, usually with short interventions and small sample sizes. The current study assessed the effect of a tDCS (active versus sham) and a 3-month cognitive training intervention on task-based functional connectivity during completion of the UFOV task in a large older adult sample (N = 153). We found significant increased functional connectivity between the left and right pars triangularis (the ROIs closest to the electrodes) following active, but not sham tDCS. Additionally, we see trending behavioral improvements associated with these functional connectivity changes in the active tDCS group, but not sham. Collectively, these findings suggest that tDCS and cognitive training can be an effective modulator of task-based functional connectivity above and beyond a cognitive training intervention alone.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Aged , Cognitive Training , Cognition/physiology , Memory, Short-Term/physiology , Prefrontal Cortex
7.
Adv Mater ; 36(11): e2309547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088507

ABSTRACT

Biogenic crystals present a variety of complex morphologies that form with exquisite fidelity. In the case of the intricate morphologies of coccoliths, calcite crystals produced by marine algae, only a single set of crystallographic facets is utilized. It is unclear which growth process can merge this simple crystallographic habit with the species-specific architectures. Here, a suite of state-of-the-art electron microscopies is used to follow both the growth trajectories of the crystals ex situ, and the cellular environment in situ, in the species Emiliania huxleyi. It is shown that crystal growth alternates between a space filling and a skeletonized growth mode, where the crystals elongate via their stable crystallographic facets, but the final morphology is a manifestation of growth arrest. This process is reminiscent of the balance between reaction-limited and transport-limited growth regimes underlying snowflake formation. It is suggested that localized ion transport regulates the kinetic instabilities that are required for transport-limited growth, leading to reproducible morphologies.

8.
Biomater Adv ; 156: 213712, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056110

ABSTRACT

Selective COX-2 inhibitors such as etoricoxib (ETX) are potentially indicated for the treatment of intestinal inflammatory disorders. However, their systemic administration provokes some off-site secondary effects, decreasing the desirable local effectiveness. To circumvent such limitations, herein an ETX delivery system based on electrospun fibrous meshes (eFMs) was proposed. ETX at different concentrations (1, 2, and 3 mg mL-1) was loaded into eFMs, which not affect the morphology and the mechanical properties of this drug delivery system (DDS). The ETX showed a burst release within the first 12 h, followed by a faster release until 36 h, gradually decreasing over time. Importantly, the ETX studied concentrations were not toxic to human colonic cells (i.e. epithelial and fibroblast). Moreover, the DDS loading the highest concentration of ETX, when tested with stimulated human macrophages, promoted a reduction of PGE2, IL-8 and TNF-α secretion. Therefore, the proposed DDS may constitute a safe and efficient treatment of colorectal diseases promoted by inflammatory disorders associated with COX-2.


Subject(s)
Cyclooxygenase 2 Inhibitors , Drug Delivery Systems , Inflammatory Bowel Diseases , Humans , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone , Etoricoxib/administration & dosage , Etoricoxib/pharmacology , Tumor Necrosis Factor-alpha , Inflammatory Bowel Diseases/drug therapy
9.
Heliyon ; 9(12): e22964, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076107

ABSTRACT

Unknown to many, the Philippines is host to a few remaining accessions of the underutilised and understudied cereal foxtail millet (Setaria italica (L.) P. Beauv.). We collected together accessions of this crop from different eco-geographical locations within the Philippines, along with a few accessions from Lanyu, Taiwan, to undertake a study of their nutritional value and genetic diversity. All accessions were field-grown in 2022, dry season (DS) at the Institute of Plant Breeding (IPB) Experiment Station, Los Baños, Laguna, Philippines. The accessions were tested for micronutrients, including Zn and Fe, nitrogen as a proxy for protein, ß-carotene, phytic acid, and a number of phenolic compounds with known nutritional potential. Of the 20 accessions tested, the accessions Bayaras and GB61438 had the highest level of Zn (107.1 mg/kg) and Fe (70.52 mg/kg), respectively, higher than levels found in traditional rice varieties. For ß-carotene the highest concentration was found in the accession Balles (∼10 µg/g). Twelve phenolic compounds were detected, with catechin, syringic acid, ferulic acid and kaempferol having the highest concentrations. To assess the genetic diversity, we sequenced a set of eight samples selected from among the accessions to a depth of at least 25-fold using whole-genome re-sequencing. Analysis of the population structure, using genome-wide, high-quality SNPs, showed modest diversity among the accessions, with two unadmixed groups. The accessions are monophyletic relative to their earliest common ancestor, with the very light brown accessions emerging earlier than the light brown and reddish-brown varieties. Analysis of zinc-regulated, iron-regulated transporter-like protein (ZIP) transporters within the foxtail millet reference sequence, var. Yugu1 identified 17 putative ZIP transporters. Variant calling identified SNPs primarily within 3' and 5' regions, and introns, indicating variation between foxtail millet accessions within regulatory gene regions rather than in structural proteins. The local foxtail millet accessions, therefore, represent a potential alternative source of nutrients which may help in addressing malnutrition in the Philippines.

10.
Evol Lett ; 7(5): 331-338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37829497

ABSTRACT

Intraspecific genetic diversity is a key aspect of biodiversity. Quaternary climatic change and glaciation influenced intraspecific genetic diversity by promoting range shifts and population size change. However, the extent to which glaciation affected genetic diversity on a global scale is not well established. Here we quantify nucleotide diversity, a common metric of intraspecific genetic diversity, in more than 38,000 plant and animal species using georeferenced DNA sequences from millions of samples. Results demonstrate that tropical species contain significantly more intraspecific genetic diversity than nontropical species. To explore potential evolutionary processes that may have contributed to this pattern, we calculated summary statistics that measure population demographic change and detected significant correlations between these statistics and latitude. We find that nontropical species are more likely to deviate from neutral expectations, indicating that they have historically experienced dramatic fluctuations in population size likely associated with Pleistocene glacial cycles. By analyzing the most comprehensive data set to date, our results imply that Quaternary climate perturbations may be more important as a process driving the latitudinal gradient in species richness than previously appreciated.

11.
Geroscience ; 45(5): 3079-3093, 2023 10.
Article in English | MEDLINE | ID: mdl-37814198

ABSTRACT

Limited research exists on the association between resting-state functional network connectivity in the brain and learning and memory processes in advanced age. This study examined within-network connectivity of cingulo-opercular (CON), frontoparietal control (FPCN), and default mode (DMN) networks, and verbal and visuospatial learning and memory in older adults. Across domains, we hypothesized that greater CON and FPCN connectivity would associate with better learning, and greater DMN connectivity would associate with better memory. A total of 330 healthy older adults (age range = 65-89) underwent resting-state fMRI and completed the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) in a randomized clinical trial. Total and delayed recall scores were assessed from baseline data, and a learning ratio calculation was applied to participants' scores. Average CON, FPCN, and DMN connectivity values were obtained with CONN Toolbox. Hierarchical regressions controlled for sex, race, ethnicity, years of education, and scanner site, as this was a multi-site study. Greater within-network CON connectivity was associated with better verbal learning (HVLT-R Total Recall, Learning Ratio), visuospatial learning (BVMT-R Total Recall), and visuospatial memory (BVMT-R Delayed Recall). Greater FPCN connectivity was associated with better visuospatial learning (BVMT-R Learning Ratio) but did not survive multiple comparison correction. DMN connectivity was not associated with these measures of learning and memory. CON may make small but unique contributions to learning and memory across domains, making it a valuable target in future longitudinal studies and interventions to attenuate memory decline. Further research is necessary to understand the role of FPCN in learning and memory.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Aged , Aged, 80 and over , Brain/diagnostic imaging , Memory , Learning , Mental Recall
12.
Anal Chim Acta ; 1278: 341726, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709467

ABSTRACT

The appearance of new viruses and diseases has made the development of rapid and reliable diagnostic tests crucial. In light of it, we proposed a new method for assembling an electrochemical immunosensor, based on a one-step approach for selective layer formation. For this purpose, a mixture containing the immobilizing agent (polyxydroxybutyrate, PHB) and the recognition element (antibodies against SARS-CoV-2 nucleocapsid protein) was prepared and used to modify a screen-printed carbon electrode with electrodeposited graphene oxide, for the detection of SARS-CoV-2 nucleocapsid protein (N-protein). Under optimum conditions, N-protein was successfully detected in three different matrixes - saliva, serum, and nasal swab, with the lowest detectable values of 50 pg mL-1, 1.0 ng mL-1, and 50 pg mL-1, respectively. Selectivity was assessed against SARS-CoV-2 receptor-binding domain protein (RBD) and antibodies against yellow fever (YF), and no significant response was observed in presence of interferents, reinforcing the suitability of the proposed one-step approach for selective layer formation. The proposed biosensor was stable for up to 14 days, and the mixture was suitable for immunosensor preparation even after 60 days of preparation. The proposed assembly strategy reduces the cost, analysis time, and waste generation. This reduction is achieved through miniaturization, which results in the decreased use of reagents and sample volumes. Additionally, this approach enables healthcare diagnostics to be conducted in developing regions with limited resources. Therefore, the proposed one-step approach for selective layer formation is a suitable, simpler, and a reliable alternative for electrochemical immunosensing.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , Immunoassay , SARS-CoV-2 , Antibodies , Nucleocapsid Proteins
13.
RSC Adv ; 13(40): 27997-28007, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37736565

ABSTRACT

Two novel copper(ii) complexes [Cu(2mni)2(H2O)2](NO3)2·2H2O (1) and [Cu(2mni)2(NO3)2] (2), where 2mni is 2-methyl-5-nitroimidazole, were prepared and characterized in the solid state using single-crystal and powder X-ray diffraction analyses, EPR, electronic and vibrational spectroscopies (FTIR and Raman), and thermogravimetric methods. Both products present an elongated distorted octahedral geometry with axial Cu-O bond lengths of 2.606(14) and 2.593(15) Å, indicating semi-coordination. Density functional theory (DFT) calculations at the B3LYP/LANL2DZ theory level were used to study the electronic properties of 1 and 2. The Independent Gradient Model (IGM) was employed to determine the Intrinsic Bond Strength Index (IBSI) of the semi-coordination and to plot δg isosurfaces for the electronic sharing between the metal center and ligands. A moderate to weak antibacterial activity against Escherichia coli cultures was found for 1 with a 50% growth inhibition (GI50) value of 0.25 mmol L-1. To the best of our knowledge, this is the first time that the semi-coordination analysis using IGM was carried out for a copper(ii) complex with axial elongation, finding a good correlation between the bond length and the IBSI, and the study was extended for a series of analogous complexes described in the literature.

14.
An Acad Bras Cienc ; 95(4): e20191391, 2023.
Article in English | MEDLINE | ID: mdl-37729298

ABSTRACT

Chicken broilers digestibility and performance fed with different ME levels, with and without adjustments of digestible lysine, calcium, and available phosphorus, were evaluated. For digestibility, 210 male Cobb 500 chicken broilers were used and distributed into a 3x2+1 factorial arrangement, with three ME levels (3050; 3125 and 3200 kcal/kg) with and without nutrient adjustment, plus one control treatment (2975 kcal ME/kg), totaling seven treatments including six repetitions with five birds into each repetition. For initial performance, 1120 birds were distributed randomly with eight replications within treatments and 20 birds for each replication. For final performance, 1008 chickens were distributed with eight replications and 18 birds for each replication. The DCDM and DCCP were improved (P<0.05) according to the increase of ME and the adjustment in dietary nutrients, as well as GE digestibility. The final performance showed no interaction (P>0.05) between energy and nutrient adjustment, but the increase in energy levels improved the feed conversion ratio (FCR=1.370). Increasing energy density with nutrient adjustment improves both nutrient utilization and bird performance.


Subject(s)
Calcium , Chickens , Animals , Male , Lysine , Nutrients , Phosphorus
15.
Mar Drugs ; 21(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37504925

ABSTRACT

Emulsion-based systems that combine natural polymers with vegetable oils have been identified as a promising research avenue for developing structures with potential for biomedical applications. Herein, chitosan (CHT), a natural polymer, and virgin coconut oil (VCO), a resource obtained from coconut kernels, were combined to create an emulsion system. Phytantriol-based cubosomes encapsulating sodium diclofenac, an anti-inflammatory drug, were further dispersed into CHT/VCO- based emulsion. Then, the emulsions were frozen and freeze-dried to produce scaffolds. The scaffolds had a porous structure ranging from 20.4 to 73.4 µm, a high swelling ability (up to 900%) in PBS, and adequate stiffness, notably in the presence of cubosomes. Moreover, a well-sustained release of the entrapped diclofenac in the cubosomes into the CHT/VCO-based system, with an accumulated release of 45 ± 2%, was confirmed in PBS, compared to free diclofenac dispersed (80 ± 4%) into CHT/VCO-based structures. Overall, the present approach opens up new avenues for designing porous biomaterials for drug delivery through a sustainable pathway.


Subject(s)
Chitosan , Emulsions , Diclofenac , Plant Oils/chemistry , Coconut Oil/chemistry
16.
Anal Biochem ; 676: 115231, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37414351

ABSTRACT

Protein electrophoresis in polyacrylamide gels in the presence of sodium dodecyl sulfate (SDS-PAGE) is one of the most commonly performed procedures in biochemical laboratories. It requires the use of molecular weight (MW) markers as an internal technical control and to determine the migration rate of a particular protein. In this work, we describe a simple method for preparing "homemade" prestained protein markers using readily available cow's milk and chicken egg white proteins without the need of any major protein purification step, and produce prestained MW markers ranging from 19 to 98 kDa.


Subject(s)
Proteins , Proteins/chemistry , Electrophoresis, Polyacrylamide Gel , Molecular Weight , Sodium Dodecyl Sulfate
17.
Environ Sci Pollut Res Int ; 30(31): 76687-76701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37243767

ABSTRACT

The COVID-19 pandemic resulted in the collapse of healthcare systems and led to the development and application of several approaches of wastewater-based epidemiology to monitor infected populations. The main objective of this study was to carry out a SARS-CoV-2 wastewater based surveillance in Curitiba, Southern Brazil Sewage samples were collected weekly for 20 months at the entrance of five treatment plants representing the entire city and quantified by qPCR using the N1 marker. The viral loads were correlated with epidemiological data. The correlation by sampling points showed that the relationship between the viral loads and the number of reported cases was best described by a cross-correlation function, indicating a lag between 7 and 14 days amidst the variables, whereas the data for the entire city presented a higher correlation (0.84) with the number of positive tests at lag 0 (sampling day). The results also suggest that the Omicron VOC resulted in higher titers than the Delta VOC. Overall, our results showed that the approach used was robust as an early warning system, even with the use of different epidemiological indicators or changes in the virus variants in circulation. Therefore, it can contribute to public decision-makers and health interventions, especially in vulnerable and low-income regions with limited clinical testing capacity. Looking toward the future, this approach will contribute to a new look at environmental sanitation and should even induce an increase in sewage coverage rates in emerging countries.


Subject(s)
COVID-19 , Myrtaceae , Humans , Wastewater , SARS-CoV-2 , Sewage , COVID-19/epidemiology , Brazil/epidemiology , Pandemics
18.
Gels ; 9(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36975696

ABSTRACT

The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.

19.
Biomater Adv ; 147: 213320, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739783

ABSTRACT

The thymus coordinates the development and selection of T cells. It is structured into two main compartments: the cortex and the medulla. The replication of such complex 3D environment has been challenged by bioengineering approaches. Nevertheless, the effect of the scaffold microstructure on thymic epithelial cell (TEC) cultures has not been deeply investigated. Here, we developed bilayered porous silk fibroin scaffolds and tested their effect on TEC co-cultures. The small and large pore scaffolds presented a mean pore size of 84.33 ± 21.51 µm and 194.90 ± 61.38 µm, respectively. The highly porous bilayered scaffolds presented a high water absorption and water content (> 94 %), together with mechanical properties in the range of the native tissue. TEC (i.e., medullary (mTEC) and cortical (cTEC) cell lines) proliferation is increased in scaffolds with larger pores. The co-culture of both TEC lines in the bilayered porous silk scaffolds presents enhanced cell proliferation and metabolic activity when compared with mTEC in single culture. Also, when the co-culture occurred with cTEC in the small pores layer and mTEC in the large pores layer, a 9.2- and 18.9-fold increase in Foxn1 and Icam1 gene expression in cTEC is evident. These results suggest that scaffold microstructure and the co-culture influence TEC's behaviour. Bilayered silk scaffolds with adjusted microstructure are a valid alternative for TEC culture, having possible applications in advanced thymus bioengineering strategies.


Subject(s)
Silk , Thymus Gland , Silk/metabolism , Porosity , Thymus Gland/metabolism , Tissue Engineering/methods , Bioengineering
20.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770658

ABSTRACT

The demand for bio-based and safer composite materials is increasing due to the growth of the industry, human population, and environmental concerns. In this framework, sustainable and safer cork-polymer composites (CPC), based on green low-density polyethylene (LDPE) were developed using melt-based technologies. Chitosan and polyethylene-graft-maleic anhydride (PE-g-MA) were employed to enhance the CPC's properties. The morphology, wettability, mechanical, thermal, and antibacterial properties of the CPC against Pseudomonas putida (P. putida) and Staphylococcus aureus (S. aureus) were examined. The CPC showed improved stiffness when compared with that of the LDPE matrix, preferably when combined with chitosan and PE-g-MA (5 wt. %), reinforcing the stiffness (58.8%) and the strength (66.7%). Chitosan also increased the composite stiffness and strength, as well as reduced the surface hydrophilicity. The CPCs' antibacterial activity revealed that cork significantly reduces the biofilm on the polymer matrix. The highest biofilm reduction was found with CPC containing cork and 5 wt. % chitosan for both P. putida (54% reduction) and S. aureus (36% reduction), confirming their potential to extend the lifespan of products for packaging and healthcare, among other applications. This work leads to the understanding of the factors that influence biofilm formation in cork composites and provides a strategy to reinforce their behavior using chitosan.


Subject(s)
Biofouling , Chitosan , Humans , Chitosan/pharmacology , Polyethylene , Biofouling/prevention & control , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...