Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-518860

ABSTRACT

The clinical course of the 2019 coronavirus disease (COVID-19) is variable and to a substantial degree still unpredictable, especially in persons who have neither been vaccinated nor recovered from previous infection. We hypothesized that disease progression and inflammatory responses were associated with alterations in the microbiome and metabolome. To test this, we integrated metagenome, metabolome, cytokine, and transcriptome profiles of longitudinally collected samples from hospitalized COVID-19 patients at the beginning of the pandemic (before vaccines or variants of concern) and non-infected controls, and leveraged detailed clinical information and post-hoc confounder analysis to identify robust within- and cross-omics associations. Severe COVID-19 was directly associated with a depletion of potentially beneficial intestinal microbes mainly belonging to Clostridiales, whereas oropharyngeal microbiota disturbance appeared to be mainly driven by antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine, and reduced levels of various other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Decreased abundance of Clostridiales potentially mediated the observed reduction in 5-hydroxytryptophan levels. Moreover, altered plasma levels of various tryptophan metabolites and lower abundances of Clostridiales explained significant increases in the production of IL-6, IFN{gamma} and/or TNF. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=150 HEIGHT=200 SRC="FIGDIR/small/518860v1_ufig1.gif" ALT="Figure 1"> View larger version (48K): org.highwire.dtl.DTLVardef@de2c31org.highwire.dtl.DTLVardef@27663corg.highwire.dtl.DTLVardef@a90af7org.highwire.dtl.DTLVardef@f17e9_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-492138

ABSTRACT

Vaccines are a cornerstone in COVID-19 pandemic management. Here, we compare immune responses to and preclinical efficacy of the mRNA vaccine BNT162b2, an adenovirus-vectored spike vaccine, and the live-attenuated-virus vaccine candidate sCPD9 after single and double vaccination in Syrian hamsters. All regimens containing sCPD9 showed superior efficacy. The robust immunity elicited by sCPD9 was evident in a wide range of immune parameters after challenge with heterologous SARS-CoV-2 including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue. Our results demonstrate that use of live-attenuated vaccines may offer advantages over available COVID-19 vaccines, specifically when applied as booster, and may provide a solution for containment of the COVID-19 pandemic.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-474359

ABSTRACT

Since December 2019, the novel human coronavirus SARS-CoV-2 has spread globally, causing millions of deaths. Unprecedented efforts have enabled development and authorization of a range of vaccines, which reduce transmission rates and confer protection against the associated disease COVID-19. These vaccines are conceptually diverse, including e.g. classical adjuvanted whole-inactivated virus, viral vectors, and mRNA vaccines. We have analysed two prototypic model vaccines, the strongly TH1-biased measles vaccine-derived candidate MeVvac2-SARS2-S(H) and a TH2-biased Alum-adjuvanted, non-stabilized Spike (S) protein side-by-side, for their ability to protect Syrian hamsters upon challenge with a low-passage SARS-CoV-2 patient isolate. As expected, the MeVvac2-SARS2-S(H) vaccine protected the hamsters safely from severe disease. In contrast, the protein vaccine induced vaccine-associated enhanced respiratory disease (VAERD) with massive infiltration of eosinophils into the lungs. Global RNA-Seq analysis of hamster lungs revealed reduced viral RNA and less host dysregulation in MeVvac2-SARS2-S(H) vaccinated animals, while S protein vaccination triggered enhanced host gene dysregulation compared to unvaccinated control animals. Of note, mRNAs encoding the major eosinophil attractant CCL-11, the TH2 response-driving cytokine IL-19, as well as TH2-cytokines IL-4, IL-5, and IL-13 were exclusively up-regulated in the lungs of S protein vaccinated animals, consistent with previously described VAERD induced by RSV vaccine candidates. IL-4, IL-5, and IL-13 were also up-regulated in S-specific splenocytes after protein vaccination. Using scRNA-Seq, T cells and innate lymphoid cells were identified as the source of these cytokines, while Ccl11 and Il19 mRNAs were expressed in lung macrophages displaying an activated phenotype. Interestingly, the amount of viral reads in this macrophage population correlated with the abundance of Fc-receptor reads. These findings suggest that VAERD is triggered by induction of TH2-type helper cells secreting IL-4, IL-5, and IL-13, together with stimulation of macrophage subsets dependent on non-neutralizing antibodies. Via this mechanism, uncontrolled eosinophil recruitment to the infected tissue occurs, a hallmark of VAERD immunopathogenesis. These effects could effectively be treated using dexamethasone and were not observed in animals vaccinated with MeVvac2-SARS2-S(H). Taken together, our data validate the potential of TH2-biased COVID-19 vaccines and identify the transcriptional mediators that underlie VAERD, but confirm safety of TH1-biased vaccine concepts such as vector-based or mRNA vaccines. Dexamethasone, which is already in use for treatment of severe COVID-19, may alleviate such VAERD, but in-depth scrutiny of any next-generation protein-based vaccine candidates is required, prior and after their regulatory approval.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-473180

ABSTRACT

RationaleIn face of the ongoing SARS-CoV-2 pandemic, effective and well-understood treatment options are still scarce. While vaccines have proven instrumental in fighting SARS-CoV-2, their efficacy is challenged by vaccine hesitancy, novel variants and short-lasting immunity. Therefore, understanding and optimization of therapeutic options remains essential. ObjectivesWe aimed at generating a deeper understanding on how currently used drugs, specifically dexamethasone and anti-SARS-CoV-2 antibodies, affect SARS-CoV-2 infection and host responses. Possible synergistic effects of both substances are investigated to evaluate combinatorial treatments. MethodsBy using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of treatment with either dexamethasone, anti-SARS-CoV-2 spike monoclonal antibody or a combination of both. scRNA sequencing was employed to reveal transcriptional response to treatment on a single cell level. Measurements and main resultsDexamethasone treatment resulted in similar or increased viral loads compared to controls. Anti-SARS-CoV-2 antibody treatment alone or combined with dexamethasone successfully reduced pulmonary viral burden. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe COVID-19-like disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a candidate subpopulation of neutrophils specifically responsive to dexamethasone. ConclusionsOur analyses i) confirm the anti-inflammatory properties and indicate possible modes of action for dexamethasone, ii) validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and iii) reveal synergistic effects of a combination therapy and can thus inform more effective COVID-19 therapies.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-472619

ABSTRACT

BackgroundAcute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. MethodsWe performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1-2 hours after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. ResultsHigh-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. ConclusionThe study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21266952

ABSTRACT

The use of RNA sequencing from wastewater samples is a valuable way for estimating infection dynamics and circulating lineages of SARS-CoV-2. This approach is independent from testing individuals and can therefore become the key tool to monitor this and potentially other viruses. However, it is equally important to develop easily accessible and scalable tools which can highlight critical changes in infection rates and dynamics over time across different locations given sequencing data from wastewater. Here, we provide an analysis of lineage dynamics in Berlin and New York City using wastewater sequencing and present PiGx SARS-CoV-2, a highly reproducible computational analysis pipeline with comprehensive reports. This end-to-end pipeline includes all steps from raw data to shareable reports, additional taxonomic analysis, deconvolution and geospatial time series analyses. Using simulated datasets (in silico generated and spiked-in samples) we could demonstrate the accuracy of our pipeline calculating proportions of Variants of Concern (VOC) from environmental as well as pre-mixed samples (spiked-in). By applying our pipeline on a dataset of wastewater samples from Berlin between February 2021 and January 2022, we could reconstruct the emergence of B.1.1.7(alpha) in February/March 2021 and the replacement dynamics from B.1.617.2 (delta) to BA.1 and BA.2 (omicron) during the winter of 2021/2022. Using data from very-short-reads generated in an industrial scale setting, we could see even higher accuracy in our deconvolution. Lastly, using a targeted sequencing dataset from New York City (receptor-binding-domain (RBD) only), we could reproduce the results recovering the proportions of the so-called cryptic lineages shown in the original study. Overall our study provides an in-depth analysis reconstructing virus lineage dynamics from wastewater, and that our tool can be used to identify new mutations and to detect any emerging new lineages with different amplification and sequencing methods. Our approach can support efforts to establish continuous monitoring and early-warning projects for detecting SARS-CoV-2 or any other pathogen.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-462569

ABSTRACT

The Roborovski dwarf hamster Phodopus roborovskii belongs to the Phodopus genus, one of seven within Cricetinae subfamily. Like other rodents such as mice, rats or ferrets, hamsters can be important animal models for a range of diseases. Whereas the Syrian hamster from the genus Mesocricetus is now widely used as a model for mild to moderate COVID-19, Roborovski dwarf hamster show a severe to lethal course of disease upon infection with the novel human coronavirus SARS-CoV-2.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21258481

ABSTRACT

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathogenesis, and it remains unclear if T cells also contribute to disease pathology. Here, we combined single-cell transcriptomics and proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated, CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Age-dependent generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. The proportion of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a correlated with clinical outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-423524

ABSTRACT

In COVID-19, the immune response largely determines disease severity and is key to therapeutic strategies. Cellular mechanisms contributing to inflammatory lung injury and tissue repair in SARS-CoV-2 infection, particularly endothelial cell involvement, remain ill-defined. We performed detailed spatiotemporal analyses of cellular and molecular processes in SARS-CoV-2 infected Syrian hamsters. Comparison of hamster single-cell sequencing and proteomics with data sets from COVID-19 patients demonstrated inter-species concordance of cellular and molecular host-pathogen interactions. In depth vascular and pulmonary compartment analyses (i) supported the hypothesis that monocyte-derived macrophages dominate inflammation, (ii) revealed endothelial inflammation status and T-cell attraction, and (iii) showed that CD4+ and CD8+ cytotoxic T-cell responses precede viral elimination. Using the Syrian hamster model of self-limited moderate COVID-19, we defined the specific roles of endothelial and epithelial cells, among other myeloid and non-myeloid lung cell subtypes, for determining the disease course.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-079194

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health threat with more than two million infected people since its emergence in late 2019. Detailed knowledge of the molecular biology of the infection is indispensable for understanding of the viral replication, host responses, and disease progression. We provide gene expression profiles of SARS-CoV and SARS-CoV-2 infections in three human cell lines (H1299, Caco-2 and Calu-3 cells), using bulk and single-cell transcriptomics. Small RNA profiling showed strong expression of the immunity and inflammation-associated microRNA miRNA-155 upon infection with both viruses. SARS-CoV-2 elicited approximately two-fold higher stimulation of the interferon response compared to SARS-CoV in the permissive human epithelial cell line Calu-3, and induction of cytokines such as CXCL10 or IL6. Single cell RNA sequencing data showed that canonical interferon stimulated genes such as IFIT2 or OAS2 were broadly induced, whereas interferon beta (IFNB1) and lambda (IFNL1-4) were expressed only in a subset of infected cells. In addition, temporal resolution of transcriptional responses suggested interferon regulatory factors (IRFs) activities precede that of nuclear factor-{kappa}B (NF-{kappa}B). Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 charperone activity by Tanespimycin/17-N-allylamino-17-demethoxygeldanamycin (17-AAG) resulted in a reduction of viral replication, and of TNF and IL1B mRNA levels. In summary, our study established in vitro cell culture models to study SARS-CoV-2 infection and identified HSP90 protein as potential drug target for therapeutic intervention of SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...