Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(4): 977-980, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359240

ABSTRACT

Due to their low phase noise at high carrier frequencies, photonic microwave oscillators are continuously expanding their application areas including digital signal processing, telecommunications, radio astronomy, and RADAR and LIDAR systems. Currently, the lowest noise photonic oscillators rely on traditional optical frequency combs with multiple stabilization loops that incorporate large vacuum components and complex optoelectronic configurations. Hence, the resulting systems are not only challenging to operate but also expensive to maintain. Here, we introduce a significantly simpler solution: a Photonically Referenced Extremely STable Oscillator (PRESTO). PRESTO requires only three key components: a femtosecond laser, a fiber delay element, and a pulse timing detector. The generated microwave at 10 GHz has phase noise levels of -125, -145, and <-160 dBc/Hz at 1, 10, and >100 kHz, respectively, with an integrated timing jitter of only 2 fs root mean square (RMS) over [100 Hz-1 MHz]. This approach offers a reliable solution for simplifying and downsizing photonic oscillators while delivering high performance.

2.
Opt Express ; 27(26): 37552-37558, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878534

ABSTRACT

We demonstrate for the first time the calibration of the wavelength scale of high-performance spectrometers using a fully stabilized optical frequency comb from an ultrafast optically pumped semiconductor disk laser (SDL) as a traceable reference. The SDL is a modelocked integrated external-cavity surface-emitting laser (MIXSEL) with the gain and saturable absorber layers fully integrated into one wafer chip, which forms one end mirror of the simple straight cavity with a pulse repetition rate of 11 GHz. This MIXSEL comb is actively stabilized and opens new possibilities for easier and more accurate frequency calibrations of standard laboratory instruments.

3.
Opt Lett ; 43(4): 879-882, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444017

ABSTRACT

We demonstrate the first Kerr lens mode-locked Yb:CaGdAlO4 (Yb:CALGO) thin-disk laser oscillator. It generates pulses with a duration of 30 fs at a central wavelength of 1048 nm and a repetition rate of 124 MHz. The laser emits the shortest pulses generated by a thin-disk laser oscillator, equal to the shortest pulse duration obtained by Yb-doped bulk oscillators. The average output power is currently limited to 150 mW by the low gain and limited disk quality. We expect that more suitable Yb:CALGO disks will enable substantially higher power levels with similar pulse durations.

4.
Biomed Opt Express ; 8(7): 3213-3231, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28717563

ABSTRACT

We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

5.
Opt Express ; 23(17): 21836-56, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368160

ABSTRACT

We present a detailed study of the carrier-envelope offset (CEO) frequency dynamics of SESAM modelocked thin disk lasers (TDLs) pumped by kW-class highly transverse multimode pump diodes with a typical M(2) value of 200-300, and give guidelines for future frequency stabilization of multi-100-W oscillators. We demonstrate CEO frequency detection with > 30 dB signal-to-noise ratio with a resolution bandwidth of 100 kHz from a SESAM modelocked Yb:YAG TDL delivering 140 W average output power with 748-fs pulses at 7-MHz pulse repetition rate. We compare with a low-power CEO frequency stabilized Yb:CALGO TDL delivering 2.1 W with 77-fs pulses at 65 MHz. For both lasers, we perform a complete noise characterization, measure the relevant transfer functions (TFs) and compare them to theoretical models. The measured TFs are used to determine the propagation of the pump noise step-by-step through the system components. From the noise propagation analysis, we identify the relative intensity noise (RIN) of the pump diode as the main contribution to the CEO frequency noise. The resulting noise levels are not excessive and do not prevent CEO frequency stabilization. More importantly, the laser cavity dynamics are shown to play an essential role in the CEO frequency dynamics. The cavity TFs of the two lasers are very different which explains why at this point a tight CEO frequency lock can be obtained with the Yb:CALGO TDL but not with the Yb:YAG TDL. For CEO stabilization laser cavities should exhibit high damping of the relaxation oscillations by nonlinear intra-cavity elements, for example by operating a SESAM in the roll-over regime. Therefore the optimum SESAM operation point is a trade-off between enough damping and avoiding multiple pulsing instabilities. Additional cavity components could be considered for supplementary damping independent of the SESAM operation point.

6.
Opt Lett ; 39(24): 6843-6, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25503011

ABSTRACT

We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core kagome hollow-core photonic crystal fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a kagome HC-PCF containing 13 bar of static argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100 W of average power and >100 MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100 MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance.

7.
Opt Express ; 22(16): 18979-86, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25320984

ABSTRACT

We present for the first time a SESAM-modelocked thin-disk laser (TDL) that incorporates two gain materials with different emission spectra in a single TDL resonator. The two gain media used in this experiment are the sesquioxide materials Yb:Lu2O3 and Yb:Sc2O3, which have their spectral emission peak displaced by ≈7 nm. We can benefit from a combined gain bandwidth that is wider than the one provided by a single gain material alone and still conserve the excellent thermal properties of each disk. In these first proof-of-principle experiments we demonstrate pulse durations shorter than previously achieved with the single gain material Yb:Lu2O3. The oscillator generates pulses as short as 103 fs at a repetition rate of 41.7 MHz and a center wavelength of around 1038 nm, with an average output power of 1.4 W. A different cavity layout provides pulses with a duration of 124 fs at an output power of 8.6 W. This dual-gain approach should allow for further power scaling of TDLs and these first results prove this method to be a promising new way to combine the record output-power performance of modelocked TDLs with short pulse durations in the sub-100 fs regime.

8.
Opt Express ; 22(13): 16445-55, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977894

ABSTRACT

We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (f(CEO)) beat note using a standard f-to-2f-interferometer. The f(CEO) exhibits a signal-to-noise ratio of 17 dB in a 100-kHz resolution bandwidth and a FWHM of ≈10 MHz. To our knowledge, this is the first report on the detection of the f(CEO) from a semiconductor laser, opening the door to fully stabilized compact frequency combs based on modelocked semiconductor disk lasers.

9.
Opt Lett ; 39(1): 9-12, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24365808

ABSTRACT

We present a semiconductor saturable absorber mirror (SESAM) mode-locked thin-disk laser generating 80 µJ of pulse energy without additional amplification. This laser oscillator operates at a repetition rate of 3.03 MHz and delivers up to 242 W of average output power with a pulse duration of 1.07 ps, resulting in an output peak power of 66 MW. In order to minimize the parasitic nonlinearity of the air inside the laser cavity, the oscillator was operated in a vacuum environment. To start and stabilize soliton mode locking, we used an optimized high-damage threshold, low-loss SESAM. With this new milestone result, we have successfully scaled the pulse energy of ultrafast laser oscillators to a new performance regime and can predict that pulse energies of several hundreds of microjoules will become possible in the near future. Such lasers are interesting for both industrial and scientific applications, for example for precise micromachining and attosecond science.

10.
Opt Lett ; 38(19): 3842-5, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24081067

ABSTRACT

We present a semiconductor saturable absorber mirror (SESAM) mode-locked thin disk laser (TDL) based on Yb:CaGdAlO(4) (Yb:CALGO) generating 62 fs pulses, which is the shortest pulse duration achieved from mode-locked TDLs to date. The oscillator operates at a repetition rate of 65 MHz and delivers 5.1 W of average output power. The short pulse duration of our TDL in combination with the high intracavity peak power of 44 MW makes this oscillator attractive for intracavity table-top extreme nonlinear optics applications such as high harmonic generation and vacuum ultraviolet frequency comb generation. The current average power was limited by the quality of the Yb:CALGO disk. However, power scaling of Yb:CALGO TDLs to the multi-10-W range with short pulse durations (<100 fs) appears feasible in the near future by using thinner disks of better quality and further optimized SESAMs.

11.
Opt Express ; 21(21): 24770-80, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24150320

ABSTRACT

We phase-stabilized the carrier-envelope-offset (CEO) frequency of a SESAM modelocked Yb:CaGdAlO4 (CALGO) thin disk laser (TDL) generating 90-fs pulses at a center wavelength of 1051.6 nm and a repetition rate of 65 MHz. By launching only 2% of its output power into a photonic crystal fiber, we generated a coherent octave-spanning supercontinuum spectrum. Using a standard f-to-2f interferometer for CEO detection, we measured CEO beats with 33 dB signal-to-noise ratio in 100 kHz resolution bandwidth. We achieved a tight lock of the CEO frequency at 26.18 MHz by active feedback to the pump current. The residual in-loop integrated phase noise is 120 mrad (1 Hz-1 MHz). This is, to our knowledge, the first CEO-stabilized SESAM modelocked TDL. Our results show that a reliable lock of the CEO frequency can be achieved using standard techniques in spite of the strongly spatially multimode pumping scheme of TDLs. This opens the door towards fully-stabilized low-noise frequency combs with hundreds of watts of average power from table-top SESAM modelocked thin disk oscillators.

12.
Opt Express ; 21(4): 4986-94, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23482031

ABSTRACT

We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.


Subject(s)
Data Compression/methods , Fiber Optic Technology/instrumentation , Lasers , Equipment Design , Equipment Failure Analysis , Gases/chemistry
13.
Opt Express ; 20(21): 23535-41, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188316

ABSTRACT

We present an ultrafast thin disk laser that generates an average output power of 275 W, which is higher than any other modelocked laser oscillator. It is based on the gain material Yb:YAG and operates at a pulse duration of 583 fs and a repetition rate of 16.3 MHz resulting in a pulse energy of 16.9 µJ and a peak power of 25.6 MW. A SESAM designed for high damage threshold initiated and stabilized soliton modelocking. We reduced the nonlinearity of the atmosphere inside the cavity by several orders of magnitude by operating the oscillator in a vacuum environment. Thus soliton modelocking was achieved at moderate amounts of self-phase modulation and negative group delay dispersion. Our approach opens a new avenue for power scaling femtosecond oscillators to the kW level.


Subject(s)
Amplifiers, Electronic , Lasers , Oscillometry/instrumentation , Energy Transfer , Equipment Design , Equipment Failure Analysis , Miniaturization , Vacuum
14.
Opt Lett ; 35(10): 1515-7, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20479793

ABSTRACT

We demonstrate the use of a binary diffractive optical element in a very simple setup to convert the multilobed beam from a low fill factor array of coherent laser diodes into a quasi-Gaussian beam. The phase profile of the grating is determined with a phase retrieval algorithm. Experimentally, the conversion efficiency reaches more than 44%. We also establish that this setup can be used to make an effective measurement of the coherency of the laser array.

SELECTION OF CITATIONS
SEARCH DETAIL
...