Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(32): e2207081120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523550

ABSTRACT

We assess wheat yield losses occurring due to ozone pollution in India and its economic burden on producers, consumers, and the government. Applying an ozone flux-based risk assessment, we show that ambient ozone levels caused a mean 14.18% reduction in wheat yields during 2008 to 2012. Furthermore, irrigated wheat was particularly sensitive to ozone-induced yield losses, indicating that ozone pollution could undermine climate-change adaptation efforts through irrigation expansion. Applying an economic model, we examine the effects of a counterfactual, "pollution-free" scenario on yield losses, wheat prices, consumer and producer welfare, and government costs. We explore three policy scenarios in which the government support farmers at observed levels of either procurement prices (fixed-price), procurement quantities (fixed-procurement), or procurement expenditure (fixed-expenditure). In pollution-free conditions, the fixed-price scenario absorbs the fall in prices, thus increasing producer welfare by USD 2.7 billion, but total welfare decreases by USD 0.24 billion as government costs increase (USD 2.9 billion). In the fixed-procurement and fixed-expenditure scenarios, ozone mitigation allows wheat prices to fall by 38.19 to 42.96%. The producers lose by USD 5.10 to 6.01 billion, but the gains to consumers and governments (USD 8.7 to 10.2 billion) outweigh these losses. These findings show that the government and consumers primarily bear the costs of ozone pollution. For pollution mitigation to optimally benefit wheat production and maximize social welfare, new approaches to support producers other than fixed-price grain procurement may be required. We also emphasize the need to consider air pollution in programs to improve agricultural resilience to climate change.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Ozone/analysis , Triticum , Air Pollutants/analysis , Government
2.
Annu Rev Plant Biol ; 63: 637-61, 2012.
Article in English | MEDLINE | ID: mdl-22404461

ABSTRACT

Tropospheric ozone (O(3)) is a global air pollutant that causes billions of dollars in lost plant productivity annually. It is an important anthropogenic greenhouse gas, and as a secondary air pollutant, it is present at high concentrations in rural areas far from industrial sources. It also reduces plant productivity by entering leaves through the stomata, generating other reactive oxygen species and causing oxidative stress, which in turn decreases photosynthesis, plant growth, and biomass accumulation. The deposition of O(3) into vegetation through stomata is an important sink for tropospheric O(3), but this sink is modified by other aspects of environmental change, including rising atmospheric carbon dioxide concentrations, rising temperature, altered precipitation, and nitrogen availability. We review the atmospheric chemistry governing tropospheric O(3) mass balance, the effects of O(3) on stomatal conductance and net primary productivity, and implications for agriculture, carbon sequestration, and climate change.


Subject(s)
Air Pollutants/toxicity , Climate Change , Ozone/toxicity , Plant Development/drug effects , Plants/drug effects , Plants/metabolism , Carbon/pharmacokinetics , Crops, Agricultural , Oxidants, Photochemical/toxicity , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Stomata/drug effects , Plant Stomata/metabolism , Poaceae/growth & development , Trees/growth & development
3.
Rapid Commun Mass Spectrom ; 23(7): 980-4, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19241413

ABSTRACT

Isotopically labelled ozone ((18)O(3)) is an ideal tool to study the deposition of O(3) to plants and soil, but no studies have made use of it due to the technical difficulties in producing isotopically enriched ozone. For (18)O(3) to be used in fumigation experiments, it has to be purified and stored safely prior to fumigations, to ensure that the label is present predominantly in the form of O(3), and to make efficient use of isotopically highly enriched oxygen. We present a simple apparatus that allows for the safe generation, purification, storage, and release of (18)O(3). Following the purification and release of O(3), about half (by volume) of the (18)O is present in the form of O(3). This means that for a given release of (18)O(3) into the fumigation system, a roughly identical volume of (18)O(2) is released. However, the small volume of this concurrent (18)O(2) release (100 nmol mol(-1) in our experiment) results in only a minor shift of the much larger atmospheric oxygen pool, with no detectable consequence for the isotopic enrichment of either soil or plant materials. We demonstrate here the feasibility of using (18)O as an isotopic tracer in O(3) fumigations by exposing dry soil to 100 nmol mol(-1) (18)O(3) for periods ranging from 1 to 11 h. The (18)O tracer accumulation in soil samples is measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS), and the results show a linear increase in (18)O/(16)O isotope ratio over time, with significant differences detectable after 1 h of exposure. The apparatus is adapted for use with fumigation chambers sustaining flow rates of 1 m(3) min(-1) for up to 12 h, but simple modifications now allow larger quantities of O(3) to be stored and continuously released (e.g. for use with open-top chambers or FACE facilities).


Subject(s)
Air Pollutants/analysis , Ozone/metabolism , Feasibility Studies , Fumigation/methods , Oxygen Isotopes , Ozone/chemistry , Plants/metabolism , Soil/analysis
4.
New Phytol ; 182(1): 85-90, 2009.
Article in English | MEDLINE | ID: mdl-19226316

ABSTRACT

* We show that the stable isotope (18)O can be used to trace ozone into different components of the plant-soil system at environmentally relevant concentrations. * We exposed plants and soils to (18)O-labelled ozone and used isotopic enrichment in plant dry matter, leaf water and leaf apoplast, as well as in soil dry matter and soil water, to identify sites of ozone-derived (18)O accumulation. * It was shown that isotopic accumulation rates in plants can be used to infer the location of primary ozone-reaction sites, and that those in bare soils are dependent on water content. However, the isotopic accumulation rates measured in leaf tissue were much lower than the modelled stomatal flux of ozone. * Our new approach has considerable potential to elucidate the fate and reactions of ozone within both plants and soils, at scales ranging from plant communities to cellular defence mechanisms.


Subject(s)
Isotope Labeling/methods , Ozone/metabolism , Soil , Trifolium/metabolism , Fumigation , Oxygen Isotopes , Plant Leaves/metabolism , Water/metabolism
5.
Environ Pollut ; 155(3): 473-80, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18342418

ABSTRACT

A sensitivity analysis of a proposed parameterization of the stomatal conductance (g(s)) module of the European ozone deposition model (DO(3)SE) for Quercus ilex was performed. The performance of the model was tested against measured g(s) in the field at three sites in Spain. The best fit of the model was found for those sites, or during those periods, facing no or mild stress conditions, but a worse performance was found under severe drought or temperature stress, mostly occurring at continental sites. The best performance was obtained when both f(phen) and f(SWP) were included. A local parameterization accounting for the lower temperatures recorded in winter and the higher water shortage at the continental sites resulted in a better performance of the model. The overall results indicate that two different parameterizations of the model are needed, one for marine-influenced sites and another one for continental sites.


Subject(s)
Air Pollutants/metabolism , Oxidants, Photochemical/metabolism , Ozone/metabolism , Plant Stomata/physiology , Quercus/metabolism , Air Pollutants/analysis , Environmental Monitoring/methods , Geography , Models, Biological , Oxidants, Photochemical/analysis , Ozone/analysis , Plant Transpiration , Seasons , Spain
6.
Environ Pollut ; 147(3): 454-66, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17412465

ABSTRACT

Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO(3)SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O(3) risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O(3) risk.


Subject(s)
Climate , Oxidants, Photochemical/toxicity , Ozone/toxicity , Trees/drug effects , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Europe , Fagus/drug effects , Models, Biological , Pinus/drug effects , Quercus/drug effects , Risk Assessment/methods , Species Specificity
7.
Environ Pollut ; 146(3): 763-70, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16824657

ABSTRACT

Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.


Subject(s)
Climate , Oxidants, Photochemical/toxicity , Ozone/toxicity , Triticum/metabolism , Atmosphere/analysis , Ecosystem , Europe , Greenhouse Effect , Meteorological Concepts , Oxidants, Photochemical/analysis , Oxidants, Photochemical/pharmacokinetics , Ozone/analysis , Ozone/pharmacokinetics , Plant Leaves/drug effects , Plant Leaves/metabolism , Temperature , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...