Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 183(3): 332-335, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30085254

ABSTRACT

Building materials of different brands were assessed for the concentrations of 226Ra, 232Th and 40K using HPGe detector. The activity concentrations in the measured samples ranged from 27 ± 8 to 82 ± 8 Bq kg-1 for 226Ra, 41 ± 4 to 101 ± 8 Bq kg-1 for 232Th and 140 ± 8 to 940 ± 19 Bq kg-1 for 40K, respectively. The Radium equivalent (Raeq) activity from the samples was found to be <370 Bq kg-1 as the recommended value for construction materials. This study will set a baseline data for significant standards on radiation exposure of the measured radionuclides in the selected building materials used in Nigeria.


Subject(s)
Construction Materials , Potassium Radioisotopes/analysis , Radium/analysis , Thorium/analysis , Nigeria , Spectrometry, Gamma
2.
MethodsX ; 5: 1419-1426, 2018.
Article in English | MEDLINE | ID: mdl-30456176

ABSTRACT

The activity levels of 238U, 232Th and 40K in soil surrounding major office complexes in Covenant University were analyzed for radiological hazards to determine the safety of the residents in such environment. Sixteen (16) soil samples were collected, prepared and sent to Acme laboratory in Canada for analysis with the use of high purity germanium detector. The mean activity concentrations of 238U, 232Th and 40K were found to be 45 ± 10, 135 ± 8 and 195 ± 20 respectively. The concentrations of 238U and 232Th were found to be higher than the world recommended standard of 35 and 30, while the result for 40K was noted to be lower than the world safe limit. The average values of Raeq, D, AED, Iyr, Hex and ELCR in this study were estimated to be 252.33 Bq/kg, 110.15 nGy/h, 0.13 mSv/y, 1.78, 0.68 and 0.47 × 10-3 respectively. It was noticed that none of the measured parameters was higher than the internationally recommended safe limits. 232Th was found to be the major contributor to the environmental radionuclides in the area of study. Therefore, the inhabitants of the office complexes whose environment was assessed are considered not be exposed to any radiological hazards.

3.
PLoS One ; 11(1): e0145862, 2016.
Article in English | MEDLINE | ID: mdl-26745623

ABSTRACT

A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.


Subject(s)
Metal Nanoparticles/chemistry , Methane/chemistry , Carbon Dioxide/chemistry , Catalysis , Magnesium/chemistry , Metal Nanoparticles/ultrastructure , Nickel/chemistry , Particle Size , Platinum/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...