Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 37(3): 322-6, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2184122

ABSTRACT

All engineering measurements are subject to inaccurate and imprecise estimates, including the estimate of blood flow velocity. An assessment of specific error sources can minimize such uncertainties. Frequency-dependent attenuation and Rayleigh scattering are significant error sources for pulsed Doppler ultrasound because the transmitted ultrasonic signal has a finite width spectrum. The former causes a frequency downshift and the latter a frequency upshift, both of which are independent of the actual Doppler frequency shift. This communication evaluates these error sources through computer stimulation and compares the computed error to experimental data.


Subject(s)
Computer Simulation , Models, Cardiovascular , Regional Blood Flow , Ultrasonography , Blood Flow Velocity
2.
Article in English | MEDLINE | ID: mdl-18285029

ABSTRACT

An ultrasonic human-blood-flow velocity profile measurement method using time-domain correlation of consecutive echo pairs has been developed. The time shift between a pair of range gated echoes is estimated by searching for the shift that results in the maximum correlation. The time shift indicates the distance a group of scatterers has moved, from which flow velocity is estimated. The basis for the computer simulations and error analyses of the scheme includes a band-passed white Gaussian noise signal model for an echo from a scattering medium, the estimate of flow velocity from both a single scatterer and multiple scatterers, and a derived precision estimation. The error analysis via computer simulation includes an evaluation of errors associated with the correlation method. For a uniform flow velocity profile, beamwidth modulation represents the greatest error source. However, for a nonuniform flow velocity profile, the jitter caused by a small flow velocity gradient can exceed the other error sources. A detailed computer simulation evaluated the interdependencies of window length, beam width, vessel diameter, and viewing angle on the estimation of flow velocity.

3.
Article in English | MEDLINE | ID: mdl-18285030

ABSTRACT

A novel ultrasonic volumetric flow measurement method using time-domain correlation of consecutive pairs of echoes has been developed. An ultrasonic data acquisition system determined the time shift between a pair of range gated echoes by searching for the time shift with the maximum correlation between the RF sampled waveforms. Experiments with a 5-MHz transducer indicate that the standard deviation of the estimate of steady fluid velocity through 6-mm-diameter tubes is less than 10% of the mean. Experimentally, Sephadex (G-50; 20-80 mum dia.) particles in water and fresh porcine blood have been used as ultrasound scattering fluids. Two-dimensional (2-D) flow velocity can be estimated by slowly sweeping the ultrasonic beam across the blood vessel phantom. Volumetric flow through the vessel is estimated by integrating the 2-D flow velocity field and then is compared to hydrodynamic flow measurements to assess the overall experimental accuracy of the time-domain method. Flow rates from 50-500 ml/min have been estimated with an accuracy better than 10% under the idealized characteristics used in this study, which include straight circular thin-walled tubes, laminar axially-symmetric steady flow, and no intervening tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...